Improving oxygen vacancies by cobalt doping in MoO2 nanorods for efficient electrocatalytic hydrogen evolution reaction
Abstract Recently, molybdenum dioxide (MoO2) has gained intensive attention as an eco‐friendly and earth abundant catalyst for electrocatalytic hydrogen evolution from water splitting. However, the catalytic activity of MoO2 catalyst for hydrogen evolution reaction (HER) is severely limited by the l...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley-VCH
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c2dedac2d59442699a7ed326a1da6fc3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c2dedac2d59442699a7ed326a1da6fc3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c2dedac2d59442699a7ed326a1da6fc32021-11-10T13:30:46ZImproving oxygen vacancies by cobalt doping in MoO2 nanorods for efficient electrocatalytic hydrogen evolution reaction2688-401110.1002/nano.202100075https://doaj.org/article/c2dedac2d59442699a7ed326a1da6fc32021-11-01T00:00:00Zhttps://doi.org/10.1002/nano.202100075https://doaj.org/toc/2688-4011Abstract Recently, molybdenum dioxide (MoO2) has gained intensive attention as an eco‐friendly and earth abundant catalyst for electrocatalytic hydrogen evolution from water splitting. However, the catalytic activity of MoO2 catalyst for hydrogen evolution reaction (HER) is severely limited by the less exposed active sites. Herein, we present Co‐doped MoO2 for efficient HER through a facile wet chemistry synthesis followed by calcination treatment process. The optimized Co‐MoO2‐0.01 nanorods (NRs) delivers a very low overpotential of 26 mV at 10 mA cm−2 and a small Tafel slope of 30.9 mV dec−1, which is much better than that of pure MoO2 NRs and the commercial Pt/C catalyst in HER. Experimental and theoretical results reveal that Co doping not only produce more oxygen vacancies in MoO2, which can activate adjacent oxygen atoms as active sites and thus increase the exposed active sites on the surface of catalyst, but also enhance the electrical conductivity of catalyst during HER process. In a word, this work provides a new promising synthetic strategy for developing earth‐abundant and cost‐effective HER electrocatalysts through rational defect‐engineering design.Hailong LiHong LiYu QiuShuangquan LiuJianxiong FanXiaoHui GuoWiley-VCHarticleactivitydopinghydrogen evolution reactionMoO2oxygen vacanciesMaterials of engineering and construction. Mechanics of materialsTA401-492ENNano Select, Vol 2, Iss 11, Pp 2148-2158 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
activity doping hydrogen evolution reaction MoO2 oxygen vacancies Materials of engineering and construction. Mechanics of materials TA401-492 |
spellingShingle |
activity doping hydrogen evolution reaction MoO2 oxygen vacancies Materials of engineering and construction. Mechanics of materials TA401-492 Hailong Li Hong Li Yu Qiu Shuangquan Liu Jianxiong Fan XiaoHui Guo Improving oxygen vacancies by cobalt doping in MoO2 nanorods for efficient electrocatalytic hydrogen evolution reaction |
description |
Abstract Recently, molybdenum dioxide (MoO2) has gained intensive attention as an eco‐friendly and earth abundant catalyst for electrocatalytic hydrogen evolution from water splitting. However, the catalytic activity of MoO2 catalyst for hydrogen evolution reaction (HER) is severely limited by the less exposed active sites. Herein, we present Co‐doped MoO2 for efficient HER through a facile wet chemistry synthesis followed by calcination treatment process. The optimized Co‐MoO2‐0.01 nanorods (NRs) delivers a very low overpotential of 26 mV at 10 mA cm−2 and a small Tafel slope of 30.9 mV dec−1, which is much better than that of pure MoO2 NRs and the commercial Pt/C catalyst in HER. Experimental and theoretical results reveal that Co doping not only produce more oxygen vacancies in MoO2, which can activate adjacent oxygen atoms as active sites and thus increase the exposed active sites on the surface of catalyst, but also enhance the electrical conductivity of catalyst during HER process. In a word, this work provides a new promising synthetic strategy for developing earth‐abundant and cost‐effective HER electrocatalysts through rational defect‐engineering design. |
format |
article |
author |
Hailong Li Hong Li Yu Qiu Shuangquan Liu Jianxiong Fan XiaoHui Guo |
author_facet |
Hailong Li Hong Li Yu Qiu Shuangquan Liu Jianxiong Fan XiaoHui Guo |
author_sort |
Hailong Li |
title |
Improving oxygen vacancies by cobalt doping in MoO2 nanorods for efficient electrocatalytic hydrogen evolution reaction |
title_short |
Improving oxygen vacancies by cobalt doping in MoO2 nanorods for efficient electrocatalytic hydrogen evolution reaction |
title_full |
Improving oxygen vacancies by cobalt doping in MoO2 nanorods for efficient electrocatalytic hydrogen evolution reaction |
title_fullStr |
Improving oxygen vacancies by cobalt doping in MoO2 nanorods for efficient electrocatalytic hydrogen evolution reaction |
title_full_unstemmed |
Improving oxygen vacancies by cobalt doping in MoO2 nanorods for efficient electrocatalytic hydrogen evolution reaction |
title_sort |
improving oxygen vacancies by cobalt doping in moo2 nanorods for efficient electrocatalytic hydrogen evolution reaction |
publisher |
Wiley-VCH |
publishDate |
2021 |
url |
https://doaj.org/article/c2dedac2d59442699a7ed326a1da6fc3 |
work_keys_str_mv |
AT hailongli improvingoxygenvacanciesbycobaltdopinginmoo2nanorodsforefficientelectrocatalytichydrogenevolutionreaction AT hongli improvingoxygenvacanciesbycobaltdopinginmoo2nanorodsforefficientelectrocatalytichydrogenevolutionreaction AT yuqiu improvingoxygenvacanciesbycobaltdopinginmoo2nanorodsforefficientelectrocatalytichydrogenevolutionreaction AT shuangquanliu improvingoxygenvacanciesbycobaltdopinginmoo2nanorodsforefficientelectrocatalytichydrogenevolutionreaction AT jianxiongfan improvingoxygenvacanciesbycobaltdopinginmoo2nanorodsforefficientelectrocatalytichydrogenevolutionreaction AT xiaohuiguo improvingoxygenvacanciesbycobaltdopinginmoo2nanorodsforefficientelectrocatalytichydrogenevolutionreaction |
_version_ |
1718440033014251520 |