Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness

In this article, the authors study the Lebesgue point of functions from Hajłasz–Sobolev, Besov, and Triebel–Lizorkin spaces with generalized smoothness on doubling metric measure spaces and prove that the exceptional sets of their Lebesgue points have zero capacity via the capacities related to thes...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ziwei Li, Dachun Yang, Wen Yuan
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/c2f09e2e19ef4920b1c8c2141be91e07
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this article, the authors study the Lebesgue point of functions from Hajłasz–Sobolev, Besov, and Triebel–Lizorkin spaces with generalized smoothness on doubling metric measure spaces and prove that the exceptional sets of their Lebesgue points have zero capacity via the capacities related to these spaces. In case these functions are not locally integrable, the authors also consider their generalized Lebesgue points defined via the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-medians instead of the classical ball integral averages and establish the corresponding zero-capacity property of the exceptional sets.