Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness
In this article, the authors study the Lebesgue point of functions from Hajłasz–Sobolev, Besov, and Triebel–Lizorkin spaces with generalized smoothness on doubling metric measure spaces and prove that the exceptional sets of their Lebesgue points have zero capacity via the capacities related to thes...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c2f09e2e19ef4920b1c8c2141be91e07 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c2f09e2e19ef4920b1c8c2141be91e07 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c2f09e2e19ef4920b1c8c2141be91e072021-11-11T18:16:42ZLebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness10.3390/math92127242227-7390https://doaj.org/article/c2f09e2e19ef4920b1c8c2141be91e072021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2724https://doaj.org/toc/2227-7390In this article, the authors study the Lebesgue point of functions from Hajłasz–Sobolev, Besov, and Triebel–Lizorkin spaces with generalized smoothness on doubling metric measure spaces and prove that the exceptional sets of their Lebesgue points have zero capacity via the capacities related to these spaces. In case these functions are not locally integrable, the authors also consider their generalized Lebesgue points defined via the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-medians instead of the classical ball integral averages and establish the corresponding zero-capacity property of the exceptional sets.Ziwei LiDachun YangWen YuanMDPI AGarticleHajłasz–Sobolev spaceHajłasz–Besov spaceHajłasz–Triebel–Lizorkin spacegeneralized smoothnessLebesgue pointcapacityMathematicsQA1-939ENMathematics, Vol 9, Iss 2724, p 2724 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Hajłasz–Sobolev space Hajłasz–Besov space Hajłasz–Triebel–Lizorkin space generalized smoothness Lebesgue point capacity Mathematics QA1-939 |
spellingShingle |
Hajłasz–Sobolev space Hajłasz–Besov space Hajłasz–Triebel–Lizorkin space generalized smoothness Lebesgue point capacity Mathematics QA1-939 Ziwei Li Dachun Yang Wen Yuan Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness |
description |
In this article, the authors study the Lebesgue point of functions from Hajłasz–Sobolev, Besov, and Triebel–Lizorkin spaces with generalized smoothness on doubling metric measure spaces and prove that the exceptional sets of their Lebesgue points have zero capacity via the capacities related to these spaces. In case these functions are not locally integrable, the authors also consider their generalized Lebesgue points defined via the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-medians instead of the classical ball integral averages and establish the corresponding zero-capacity property of the exceptional sets. |
format |
article |
author |
Ziwei Li Dachun Yang Wen Yuan |
author_facet |
Ziwei Li Dachun Yang Wen Yuan |
author_sort |
Ziwei Li |
title |
Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness |
title_short |
Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness |
title_full |
Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness |
title_fullStr |
Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness |
title_full_unstemmed |
Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness |
title_sort |
lebesgue points of besov and triebel–lizorkin spaces with generalized smoothness |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/c2f09e2e19ef4920b1c8c2141be91e07 |
work_keys_str_mv |
AT ziweili lebesguepointsofbesovandtriebellizorkinspaceswithgeneralizedsmoothness AT dachunyang lebesguepointsofbesovandtriebellizorkinspaceswithgeneralizedsmoothness AT wenyuan lebesguepointsofbesovandtriebellizorkinspaceswithgeneralizedsmoothness |
_version_ |
1718431909367775232 |