Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness

In this article, the authors study the Lebesgue point of functions from Hajłasz–Sobolev, Besov, and Triebel–Lizorkin spaces with generalized smoothness on doubling metric measure spaces and prove that the exceptional sets of their Lebesgue points have zero capacity via the capacities related to thes...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ziwei Li, Dachun Yang, Wen Yuan
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/c2f09e2e19ef4920b1c8c2141be91e07
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c2f09e2e19ef4920b1c8c2141be91e07
record_format dspace
spelling oai:doaj.org-article:c2f09e2e19ef4920b1c8c2141be91e072021-11-11T18:16:42ZLebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness10.3390/math92127242227-7390https://doaj.org/article/c2f09e2e19ef4920b1c8c2141be91e072021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2724https://doaj.org/toc/2227-7390In this article, the authors study the Lebesgue point of functions from Hajłasz–Sobolev, Besov, and Triebel–Lizorkin spaces with generalized smoothness on doubling metric measure spaces and prove that the exceptional sets of their Lebesgue points have zero capacity via the capacities related to these spaces. In case these functions are not locally integrable, the authors also consider their generalized Lebesgue points defined via the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-medians instead of the classical ball integral averages and establish the corresponding zero-capacity property of the exceptional sets.Ziwei LiDachun YangWen YuanMDPI AGarticleHajłasz–Sobolev spaceHajłasz–Besov spaceHajłasz–Triebel–Lizorkin spacegeneralized smoothnessLebesgue pointcapacityMathematicsQA1-939ENMathematics, Vol 9, Iss 2724, p 2724 (2021)
institution DOAJ
collection DOAJ
language EN
topic Hajłasz–Sobolev space
Hajłasz–Besov space
Hajłasz–Triebel–Lizorkin space
generalized smoothness
Lebesgue point
capacity
Mathematics
QA1-939
spellingShingle Hajłasz–Sobolev space
Hajłasz–Besov space
Hajłasz–Triebel–Lizorkin space
generalized smoothness
Lebesgue point
capacity
Mathematics
QA1-939
Ziwei Li
Dachun Yang
Wen Yuan
Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness
description In this article, the authors study the Lebesgue point of functions from Hajłasz–Sobolev, Besov, and Triebel–Lizorkin spaces with generalized smoothness on doubling metric measure spaces and prove that the exceptional sets of their Lebesgue points have zero capacity via the capacities related to these spaces. In case these functions are not locally integrable, the authors also consider their generalized Lebesgue points defined via the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-medians instead of the classical ball integral averages and establish the corresponding zero-capacity property of the exceptional sets.
format article
author Ziwei Li
Dachun Yang
Wen Yuan
author_facet Ziwei Li
Dachun Yang
Wen Yuan
author_sort Ziwei Li
title Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness
title_short Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness
title_full Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness
title_fullStr Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness
title_full_unstemmed Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness
title_sort lebesgue points of besov and triebel–lizorkin spaces with generalized smoothness
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/c2f09e2e19ef4920b1c8c2141be91e07
work_keys_str_mv AT ziweili lebesguepointsofbesovandtriebellizorkinspaceswithgeneralizedsmoothness
AT dachunyang lebesguepointsofbesovandtriebellizorkinspaceswithgeneralizedsmoothness
AT wenyuan lebesguepointsofbesovandtriebellizorkinspaceswithgeneralizedsmoothness
_version_ 1718431909367775232