Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness
In this article, the authors study the Lebesgue point of functions from Hajłasz–Sobolev, Besov, and Triebel–Lizorkin spaces with generalized smoothness on doubling metric measure spaces and prove that the exceptional sets of their Lebesgue points have zero capacity via the capacities related to thes...
Guardado en:
Autores principales: | Ziwei Li, Dachun Yang, Wen Yuan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c2f09e2e19ef4920b1c8c2141be91e07 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
por: Saksman Eero, et al.
Publicado: (2017) -
Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs
por: Suying Liu, et al.
Publicado: (2021) -
Homogeneous Besov Spaces associated with the spherical mean operator
por: Rachdi,L.T, et al.
Publicado: (2011) -
On degree of approximation of Fourier series of functions in Besov Space using Nörlund mean
por: Padhy,Birupakhya Prasad, et al.
Publicado: (2021) -
Logarithmically improved regularity criteria for the Navier-Stokes equations in homogeneous Besov spaces
por: Nguyen Anh Dao, et al.
Publicado: (2021)