Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness
In this article, the authors study the Lebesgue point of functions from Hajłasz–Sobolev, Besov, and Triebel–Lizorkin spaces with generalized smoothness on doubling metric measure spaces and prove that the exceptional sets of their Lebesgue points have zero capacity via the capacities related to thes...
Enregistré dans:
Auteurs principaux: | Ziwei Li, Dachun Yang, Wen Yuan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c2f09e2e19ef4920b1c8c2141be91e07 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
par: Saksman Eero, et autres
Publié: (2017) -
Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs
par: Suying Liu, et autres
Publié: (2021) -
Homogeneous Besov Spaces associated with the spherical mean operator
par: Rachdi,L.T, et autres
Publié: (2011) -
On degree of approximation of Fourier series of functions in Besov Space using Nörlund mean
par: Padhy,Birupakhya Prasad, et autres
Publié: (2021) -
Logarithmically improved regularity criteria for the Navier-Stokes equations in homogeneous Besov spaces
par: Nguyen Anh Dao, et autres
Publié: (2021)