Functional Multigenomic Screening of Human-Associated Bacteria for NF-κB-Inducing Bioactive Effectors

ABSTRACT The effect of the microbiota on its human host is driven, at least in part, by small-molecule and protein effectors it produces. Here, we report on the use of functional multigenomic screening to identify microbiota-encoded effectors. In this study, genomic DNA from 116 human-associated bac...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andreia B. Estrela, Toshiki G. Nakashige, Christophe Lemetre, Ian D. Woodworth, Jazz L. Weisman, Louis J. Cohen, Sean F. Brady
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://doaj.org/article/c30310d16176471586d2970fd4e6b38e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c30310d16176471586d2970fd4e6b38e
record_format dspace
spelling oai:doaj.org-article:c30310d16176471586d2970fd4e6b38e2021-11-15T15:54:45ZFunctional Multigenomic Screening of Human-Associated Bacteria for NF-κB-Inducing Bioactive Effectors10.1128/mBio.02587-192150-7511https://doaj.org/article/c30310d16176471586d2970fd4e6b38e2019-12-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.02587-19https://doaj.org/toc/2150-7511ABSTRACT The effect of the microbiota on its human host is driven, at least in part, by small-molecule and protein effectors it produces. Here, we report on the use of functional multigenomic screening to identify microbiota-encoded effectors. In this study, genomic DNA from 116 human-associated bacteria was cloned en masse, and the resulting multigenomic library was screened using a nuclear factor-κB reporter (NF-κB) assay. Functional multigenomics builds on the concept of functional metagenomics but takes advantage of increasing advances in cultivating and sequencing human-associated bacteria. Effector genes found to confer NF-κB-inducing activity to Escherichia coli encode proteins in four general categories: cell wall hydrolases, membrane transporters, lipopolysaccharide biosynthetic enzymes, and proteins of unknown function. The compact nature of multigenomic libraries, which results from the ability to normalize input DNA ratios, should simplify screening of libraries using diverse heterologous hosts and reporter assays, increasing the rate of discovery of novel effector genes. IMPORTANCE Human-associated bacteria are thought to encode bioactive small molecules and proteins that play an intimate role in human health and disease. Here, we report on the creation and functional screening of a multigenomic library constructed using genomic DNA from 116 bacteria found at diverse sites across the human body. Individual clones were screened for genes capable of conferring NF-κB-inducing activity to Escherichia coli. NF-κB is a useful reporter for a range of cellular processes related to immunity, pathogenesis, and inflammation. Compared to the screening of metagenomic libraries, the ability to normalize input DNA ratios when constructing a multigenomic library should facilitate the more efficient examination of commensal bacteria for diverse bioactivities. Multigenomic screening takes advantage of the growing available resources in culturing and sequencing the human microbiota and generates starting points for more in-depth studies on the mechanisms by which commensal bacteria interact with their human host.Andreia B. EstrelaToshiki G. NakashigeChristophe LemetreIan D. WoodworthJazz L. WeismanLouis J. CohenSean F. BradyAmerican Society for MicrobiologyarticleNF-κBfunctional screeninghuman microbiomeMicrobiologyQR1-502ENmBio, Vol 10, Iss 6 (2019)
institution DOAJ
collection DOAJ
language EN
topic NF-κB
functional screening
human microbiome
Microbiology
QR1-502
spellingShingle NF-κB
functional screening
human microbiome
Microbiology
QR1-502
Andreia B. Estrela
Toshiki G. Nakashige
Christophe Lemetre
Ian D. Woodworth
Jazz L. Weisman
Louis J. Cohen
Sean F. Brady
Functional Multigenomic Screening of Human-Associated Bacteria for NF-κB-Inducing Bioactive Effectors
description ABSTRACT The effect of the microbiota on its human host is driven, at least in part, by small-molecule and protein effectors it produces. Here, we report on the use of functional multigenomic screening to identify microbiota-encoded effectors. In this study, genomic DNA from 116 human-associated bacteria was cloned en masse, and the resulting multigenomic library was screened using a nuclear factor-κB reporter (NF-κB) assay. Functional multigenomics builds on the concept of functional metagenomics but takes advantage of increasing advances in cultivating and sequencing human-associated bacteria. Effector genes found to confer NF-κB-inducing activity to Escherichia coli encode proteins in four general categories: cell wall hydrolases, membrane transporters, lipopolysaccharide biosynthetic enzymes, and proteins of unknown function. The compact nature of multigenomic libraries, which results from the ability to normalize input DNA ratios, should simplify screening of libraries using diverse heterologous hosts and reporter assays, increasing the rate of discovery of novel effector genes. IMPORTANCE Human-associated bacteria are thought to encode bioactive small molecules and proteins that play an intimate role in human health and disease. Here, we report on the creation and functional screening of a multigenomic library constructed using genomic DNA from 116 bacteria found at diverse sites across the human body. Individual clones were screened for genes capable of conferring NF-κB-inducing activity to Escherichia coli. NF-κB is a useful reporter for a range of cellular processes related to immunity, pathogenesis, and inflammation. Compared to the screening of metagenomic libraries, the ability to normalize input DNA ratios when constructing a multigenomic library should facilitate the more efficient examination of commensal bacteria for diverse bioactivities. Multigenomic screening takes advantage of the growing available resources in culturing and sequencing the human microbiota and generates starting points for more in-depth studies on the mechanisms by which commensal bacteria interact with their human host.
format article
author Andreia B. Estrela
Toshiki G. Nakashige
Christophe Lemetre
Ian D. Woodworth
Jazz L. Weisman
Louis J. Cohen
Sean F. Brady
author_facet Andreia B. Estrela
Toshiki G. Nakashige
Christophe Lemetre
Ian D. Woodworth
Jazz L. Weisman
Louis J. Cohen
Sean F. Brady
author_sort Andreia B. Estrela
title Functional Multigenomic Screening of Human-Associated Bacteria for NF-κB-Inducing Bioactive Effectors
title_short Functional Multigenomic Screening of Human-Associated Bacteria for NF-κB-Inducing Bioactive Effectors
title_full Functional Multigenomic Screening of Human-Associated Bacteria for NF-κB-Inducing Bioactive Effectors
title_fullStr Functional Multigenomic Screening of Human-Associated Bacteria for NF-κB-Inducing Bioactive Effectors
title_full_unstemmed Functional Multigenomic Screening of Human-Associated Bacteria for NF-κB-Inducing Bioactive Effectors
title_sort functional multigenomic screening of human-associated bacteria for nf-κb-inducing bioactive effectors
publisher American Society for Microbiology
publishDate 2019
url https://doaj.org/article/c30310d16176471586d2970fd4e6b38e
work_keys_str_mv AT andreiabestrela functionalmultigenomicscreeningofhumanassociatedbacteriafornfkbinducingbioactiveeffectors
AT toshikignakashige functionalmultigenomicscreeningofhumanassociatedbacteriafornfkbinducingbioactiveeffectors
AT christophelemetre functionalmultigenomicscreeningofhumanassociatedbacteriafornfkbinducingbioactiveeffectors
AT iandwoodworth functionalmultigenomicscreeningofhumanassociatedbacteriafornfkbinducingbioactiveeffectors
AT jazzlweisman functionalmultigenomicscreeningofhumanassociatedbacteriafornfkbinducingbioactiveeffectors
AT louisjcohen functionalmultigenomicscreeningofhumanassociatedbacteriafornfkbinducingbioactiveeffectors
AT seanfbrady functionalmultigenomicscreeningofhumanassociatedbacteriafornfkbinducingbioactiveeffectors
_version_ 1718427242027024384