Mixed-effect Bayesian network reveals personal effects of nutrition
Abstract Nutrition experts know by their experience that people can react very differently to the same nutrition. If we could systematically quantify these differences, it would enable more personal dietary understanding and guidance. This work proposes a mixed-effect Bayesian network as a method fo...
Guardado en:
Autores principales: | Jari Turkia, Lauri Mehtätalo, Ursula Schwab, Ville Hautamäki |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c30b3c3843694311966697eb7f5310e8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DropConnect is effective in modeling uncertainty of Bayesian deep networks
por: Aryan Mobiny, et al.
Publicado: (2021) -
Bayesian network analysis reveals alterations to default mode network connectivity in individuals at risk for Alzheimer's disease.
por: Rui Li, et al.
Publicado: (2013) -
Bias in diet determination: incorporating traditional methods in Bayesian mixing models.
por: Valentina Franco-Trecu, et al.
Publicado: (2013) -
Bayesian Network Analysis reveals resilience of the jellyfish Aurelia aurita to an Irish Sea regime shift
por: Emily G. Mitchell, et al.
Publicado: (2021) -
Bayesian Network analysis of piglet scours
por: Benjamin J. J. McCormick, et al.
Publicado: (2017)