Towards a fully automated algorithm driven platform for biosystems design

Existing efforts have been focused on one of the elements in the automation of the design, build, test, and learn (DBTL) cycle for biosystems design. Here, the authors integrate a robotic system with machine learning algorithms to fully automate the DBTL cycle and apply it in optimizing the lycopene...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mohammad HamediRad, Ran Chao, Scott Weisberg, Jiazhang Lian, Saurabh Sinha, Huimin Zhao
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/c33aa7ad3493423c9790600679c12d1e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Existing efforts have been focused on one of the elements in the automation of the design, build, test, and learn (DBTL) cycle for biosystems design. Here, the authors integrate a robotic system with machine learning algorithms to fully automate the DBTL cycle and apply it in optimizing the lycopene biosynthetic pathway.