Towards a fully automated algorithm driven platform for biosystems design
Existing efforts have been focused on one of the elements in the automation of the design, build, test, and learn (DBTL) cycle for biosystems design. Here, the authors integrate a robotic system with machine learning algorithms to fully automate the DBTL cycle and apply it in optimizing the lycopene...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c33aa7ad3493423c9790600679c12d1e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Existing efforts have been focused on one of the elements in the automation of the design, build, test, and learn (DBTL) cycle for biosystems design. Here, the authors integrate a robotic system with machine learning algorithms to fully automate the DBTL cycle and apply it in optimizing the lycopene biosynthetic pathway. |
---|