Towards a fully automated algorithm driven platform for biosystems design

Existing efforts have been focused on one of the elements in the automation of the design, build, test, and learn (DBTL) cycle for biosystems design. Here, the authors integrate a robotic system with machine learning algorithms to fully automate the DBTL cycle and apply it in optimizing the lycopene...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mohammad HamediRad, Ran Chao, Scott Weisberg, Jiazhang Lian, Saurabh Sinha, Huimin Zhao
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/c33aa7ad3493423c9790600679c12d1e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c33aa7ad3493423c9790600679c12d1e
record_format dspace
spelling oai:doaj.org-article:c33aa7ad3493423c9790600679c12d1e2021-12-02T16:58:19ZTowards a fully automated algorithm driven platform for biosystems design10.1038/s41467-019-13189-z2041-1723https://doaj.org/article/c33aa7ad3493423c9790600679c12d1e2019-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13189-zhttps://doaj.org/toc/2041-1723Existing efforts have been focused on one of the elements in the automation of the design, build, test, and learn (DBTL) cycle for biosystems design. Here, the authors integrate a robotic system with machine learning algorithms to fully automate the DBTL cycle and apply it in optimizing the lycopene biosynthetic pathway.Mohammad HamediRadRan ChaoScott WeisbergJiazhang LianSaurabh SinhaHuimin ZhaoNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-10 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Mohammad HamediRad
Ran Chao
Scott Weisberg
Jiazhang Lian
Saurabh Sinha
Huimin Zhao
Towards a fully automated algorithm driven platform for biosystems design
description Existing efforts have been focused on one of the elements in the automation of the design, build, test, and learn (DBTL) cycle for biosystems design. Here, the authors integrate a robotic system with machine learning algorithms to fully automate the DBTL cycle and apply it in optimizing the lycopene biosynthetic pathway.
format article
author Mohammad HamediRad
Ran Chao
Scott Weisberg
Jiazhang Lian
Saurabh Sinha
Huimin Zhao
author_facet Mohammad HamediRad
Ran Chao
Scott Weisberg
Jiazhang Lian
Saurabh Sinha
Huimin Zhao
author_sort Mohammad HamediRad
title Towards a fully automated algorithm driven platform for biosystems design
title_short Towards a fully automated algorithm driven platform for biosystems design
title_full Towards a fully automated algorithm driven platform for biosystems design
title_fullStr Towards a fully automated algorithm driven platform for biosystems design
title_full_unstemmed Towards a fully automated algorithm driven platform for biosystems design
title_sort towards a fully automated algorithm driven platform for biosystems design
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/c33aa7ad3493423c9790600679c12d1e
work_keys_str_mv AT mohammadhamedirad towardsafullyautomatedalgorithmdrivenplatformforbiosystemsdesign
AT ranchao towardsafullyautomatedalgorithmdrivenplatformforbiosystemsdesign
AT scottweisberg towardsafullyautomatedalgorithmdrivenplatformforbiosystemsdesign
AT jiazhanglian towardsafullyautomatedalgorithmdrivenplatformforbiosystemsdesign
AT saurabhsinha towardsafullyautomatedalgorithmdrivenplatformforbiosystemsdesign
AT huiminzhao towardsafullyautomatedalgorithmdrivenplatformforbiosystemsdesign
_version_ 1718382354708299776