Accurate and Robust Non-rigid Point Set Registration using Student’s-t Mixture Model with Prior Probability Modeling
Abstract A new accurate and robust non-rigid point set registration method, named DSMM, is proposed for non-rigid point set registration in the presence of significant amounts of missing correspondences and outliers. The key idea of this algorithm is to consider the relationship between the point se...
Guardado en:
Autores principales: | Zhiyong Zhou, Jianfei Tu, Chen Geng, Jisu Hu, Baotong Tong, Jiansong Ji, Yakang Dai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c343247361e44211823689f58ededbaf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Point Cloud Registration Algorithm Based on Laplace Mixture Model
por: Qin Shu, et al.
Publicado: (2021) -
Assessment of Dynamic Bayesian Models for Gas Turbine Diagnostics, Part 1: Prior Probability Analysis
por: Valentina Zaccaria, et al.
Publicado: (2021) -
Connections rigidity effect on probability of fracture in steel moment frames
por: Gholamreza Abdollahzadeh, et al.
Publicado: (2017) -
Automated incisional hernia characterization by non-rigid registration of CT images – a pilot study
por: Voß Samuel, et al.
Publicado: (2020) -
Optimism as a prior belief about the probability of future reward.
por: Aistis Stankevicius, et al.
Publicado: (2014)