An insulator self-blast detection method based on YOLOv4 with aerial images
Due to long-term exposure to the natural environment, insulators are prone to self-blast, threatening the safety and reliability of transmission lines. Because of the different sizes of the insulator self-blast area and the complicated background, it is inevitable that the missed and false detection...
Guardado en:
Autores principales: | Hui He, Xile Huang, Yuxuan Song, Zheng Zhang, Meng Wang, Bo Chen, Guangwei Yan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c3583fa8dd9048258df46cb8ca435d86 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identifying Damaged Buildings in Aerial Images Using the Object Detection Method
por: Lingfei Shi, et al.
Publicado: (2021) -
Light-YOLOv4: An Edge-Device Oriented Target Detection Method for Remote Sensing Images
por: Xiaojie Ma, et al.
Publicado: (2021) -
Recognition of pollution layer location in 11 kV polymer insulators used in smart power grid using dual-input VGG Convolutional Neural Network
por: B. Vigneshwaran, et al.
Publicado: (2021) -
Foxtail Millet Ear Detection Approach Based on YOLOv4 and Adaptive Anchor Box Adjustment
por: HAO Wangli, et al.
Publicado: (2021) -
Object Detection Method for Grasping Robot Based on Improved YOLOv5
por: Qisong Song, et al.
Publicado: (2021)