Beta regression model nonlinear in the parameters with additive measurement errors in variables.
We propose in this paper a general class of nonlinear beta regression models with measurement errors. The motivation for proposing this model arose from a real problem we shall discuss here. The application concerns a usual oil refinery process where the main covariate is the concentration of a typi...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c38563fc9bc44265a6e523317052b2b9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c38563fc9bc44265a6e523317052b2b9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c38563fc9bc44265a6e523317052b2b92021-12-02T20:08:59ZBeta regression model nonlinear in the parameters with additive measurement errors in variables.1932-620310.1371/journal.pone.0254103https://doaj.org/article/c38563fc9bc44265a6e523317052b2b92021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0254103https://doaj.org/toc/1932-6203We propose in this paper a general class of nonlinear beta regression models with measurement errors. The motivation for proposing this model arose from a real problem we shall discuss here. The application concerns a usual oil refinery process where the main covariate is the concentration of a typically measured in error reagent and the response is a catalyst's percentage of crystallinity involved in the process. Such data have been modeled by nonlinear beta and simplex regression models. Here we propose a nonlinear beta model with the possibility of the chemical reagent concentration being measured with error. The model parameters are estimated by different methods. We perform Monte Carlo simulations aiming to evaluate the performance of point and interval estimators of the model parameters. Both results of simulations and the application favors the method of estimation by maximum pseudo-likelihood approximation.Daniele de Brito TrindadePatrícia Leone EspinheiraKlaus Leite Pinto VasconcellosJalmar Manuel Farfán CarrascoMaria do Carmo Soares de LimaPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 7, p e0254103 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Daniele de Brito Trindade Patrícia Leone Espinheira Klaus Leite Pinto Vasconcellos Jalmar Manuel Farfán Carrasco Maria do Carmo Soares de Lima Beta regression model nonlinear in the parameters with additive measurement errors in variables. |
description |
We propose in this paper a general class of nonlinear beta regression models with measurement errors. The motivation for proposing this model arose from a real problem we shall discuss here. The application concerns a usual oil refinery process where the main covariate is the concentration of a typically measured in error reagent and the response is a catalyst's percentage of crystallinity involved in the process. Such data have been modeled by nonlinear beta and simplex regression models. Here we propose a nonlinear beta model with the possibility of the chemical reagent concentration being measured with error. The model parameters are estimated by different methods. We perform Monte Carlo simulations aiming to evaluate the performance of point and interval estimators of the model parameters. Both results of simulations and the application favors the method of estimation by maximum pseudo-likelihood approximation. |
format |
article |
author |
Daniele de Brito Trindade Patrícia Leone Espinheira Klaus Leite Pinto Vasconcellos Jalmar Manuel Farfán Carrasco Maria do Carmo Soares de Lima |
author_facet |
Daniele de Brito Trindade Patrícia Leone Espinheira Klaus Leite Pinto Vasconcellos Jalmar Manuel Farfán Carrasco Maria do Carmo Soares de Lima |
author_sort |
Daniele de Brito Trindade |
title |
Beta regression model nonlinear in the parameters with additive measurement errors in variables. |
title_short |
Beta regression model nonlinear in the parameters with additive measurement errors in variables. |
title_full |
Beta regression model nonlinear in the parameters with additive measurement errors in variables. |
title_fullStr |
Beta regression model nonlinear in the parameters with additive measurement errors in variables. |
title_full_unstemmed |
Beta regression model nonlinear in the parameters with additive measurement errors in variables. |
title_sort |
beta regression model nonlinear in the parameters with additive measurement errors in variables. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/c38563fc9bc44265a6e523317052b2b9 |
work_keys_str_mv |
AT danieledebritotrindade betaregressionmodelnonlinearintheparameterswithadditivemeasurementerrorsinvariables AT patricialeoneespinheira betaregressionmodelnonlinearintheparameterswithadditivemeasurementerrorsinvariables AT klausleitepintovasconcellos betaregressionmodelnonlinearintheparameterswithadditivemeasurementerrorsinvariables AT jalmarmanuelfarfancarrasco betaregressionmodelnonlinearintheparameterswithadditivemeasurementerrorsinvariables AT mariadocarmosoaresdelima betaregressionmodelnonlinearintheparameterswithadditivemeasurementerrorsinvariables |
_version_ |
1718375147998543872 |