Beta regression model nonlinear in the parameters with additive measurement errors in variables.

We propose in this paper a general class of nonlinear beta regression models with measurement errors. The motivation for proposing this model arose from a real problem we shall discuss here. The application concerns a usual oil refinery process where the main covariate is the concentration of a typi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniele de Brito Trindade, Patrícia Leone Espinheira, Klaus Leite Pinto Vasconcellos, Jalmar Manuel Farfán Carrasco, Maria do Carmo Soares de Lima
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c38563fc9bc44265a6e523317052b2b9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c38563fc9bc44265a6e523317052b2b9
record_format dspace
spelling oai:doaj.org-article:c38563fc9bc44265a6e523317052b2b92021-12-02T20:08:59ZBeta regression model nonlinear in the parameters with additive measurement errors in variables.1932-620310.1371/journal.pone.0254103https://doaj.org/article/c38563fc9bc44265a6e523317052b2b92021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0254103https://doaj.org/toc/1932-6203We propose in this paper a general class of nonlinear beta regression models with measurement errors. The motivation for proposing this model arose from a real problem we shall discuss here. The application concerns a usual oil refinery process where the main covariate is the concentration of a typically measured in error reagent and the response is a catalyst's percentage of crystallinity involved in the process. Such data have been modeled by nonlinear beta and simplex regression models. Here we propose a nonlinear beta model with the possibility of the chemical reagent concentration being measured with error. The model parameters are estimated by different methods. We perform Monte Carlo simulations aiming to evaluate the performance of point and interval estimators of the model parameters. Both results of simulations and the application favors the method of estimation by maximum pseudo-likelihood approximation.Daniele de Brito TrindadePatrícia Leone EspinheiraKlaus Leite Pinto VasconcellosJalmar Manuel Farfán CarrascoMaria do Carmo Soares de LimaPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 7, p e0254103 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Daniele de Brito Trindade
Patrícia Leone Espinheira
Klaus Leite Pinto Vasconcellos
Jalmar Manuel Farfán Carrasco
Maria do Carmo Soares de Lima
Beta regression model nonlinear in the parameters with additive measurement errors in variables.
description We propose in this paper a general class of nonlinear beta regression models with measurement errors. The motivation for proposing this model arose from a real problem we shall discuss here. The application concerns a usual oil refinery process where the main covariate is the concentration of a typically measured in error reagent and the response is a catalyst's percentage of crystallinity involved in the process. Such data have been modeled by nonlinear beta and simplex regression models. Here we propose a nonlinear beta model with the possibility of the chemical reagent concentration being measured with error. The model parameters are estimated by different methods. We perform Monte Carlo simulations aiming to evaluate the performance of point and interval estimators of the model parameters. Both results of simulations and the application favors the method of estimation by maximum pseudo-likelihood approximation.
format article
author Daniele de Brito Trindade
Patrícia Leone Espinheira
Klaus Leite Pinto Vasconcellos
Jalmar Manuel Farfán Carrasco
Maria do Carmo Soares de Lima
author_facet Daniele de Brito Trindade
Patrícia Leone Espinheira
Klaus Leite Pinto Vasconcellos
Jalmar Manuel Farfán Carrasco
Maria do Carmo Soares de Lima
author_sort Daniele de Brito Trindade
title Beta regression model nonlinear in the parameters with additive measurement errors in variables.
title_short Beta regression model nonlinear in the parameters with additive measurement errors in variables.
title_full Beta regression model nonlinear in the parameters with additive measurement errors in variables.
title_fullStr Beta regression model nonlinear in the parameters with additive measurement errors in variables.
title_full_unstemmed Beta regression model nonlinear in the parameters with additive measurement errors in variables.
title_sort beta regression model nonlinear in the parameters with additive measurement errors in variables.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/c38563fc9bc44265a6e523317052b2b9
work_keys_str_mv AT danieledebritotrindade betaregressionmodelnonlinearintheparameterswithadditivemeasurementerrorsinvariables
AT patricialeoneespinheira betaregressionmodelnonlinearintheparameterswithadditivemeasurementerrorsinvariables
AT klausleitepintovasconcellos betaregressionmodelnonlinearintheparameterswithadditivemeasurementerrorsinvariables
AT jalmarmanuelfarfancarrasco betaregressionmodelnonlinearintheparameterswithadditivemeasurementerrorsinvariables
AT mariadocarmosoaresdelima betaregressionmodelnonlinearintheparameterswithadditivemeasurementerrorsinvariables
_version_ 1718375147998543872