Development of hollow δ-FeOOH structures for mercury removal from water
δ-FeOOH, a magnetic iron oxyhydroxide, has a significant number of -OH groups on its surface. These provide an attractive platform for heavy metal species in contaminated water, giving it potential as an adsorbent. Its performance can be improved by increasing the number of active surface sites. δ-F...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c387459d9fe74580ad94906784ec7c51 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c387459d9fe74580ad94906784ec7c51 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c387459d9fe74580ad94906784ec7c512021-11-05T21:16:56ZDevelopment of hollow δ-FeOOH structures for mercury removal from water1751-231X10.2166/wpt.2021.055https://doaj.org/article/c387459d9fe74580ad94906784ec7c512021-10-01T00:00:00Zhttp://wpt.iwaponline.com/content/16/4/1224https://doaj.org/toc/1751-231Xδ-FeOOH, a magnetic iron oxyhydroxide, has a significant number of -OH groups on its surface. These provide an attractive platform for heavy metal species in contaminated water, giving it potential as an adsorbent. Its performance can be improved by increasing the number of active surface sites. δ-FeOOH hollow structures were synthesized on a mesoporous silica surface then treated with NaOH solution. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that structure synthesis was successful. δ-FeOOH, 5,27 nm, hollow crystals were produced with 63 m2 g−1 surface area and 20 nm average pore size. The point of zero charge was 4.72, which is beneficial for Hg(II) adsorption near neutral pH. The maximum Hg(II) adsorption capacity at pH 7 was determined as 89.1 mg g−1. The kinetics data were best fitted by a pseudo-second-order model with k2 equal 0,1151 g mg−1min−1. Finally, a nanomaterial filter was developed and used to remove mercury in water samples from a Brazilian river. HIGHLIGHTS δ-FeOOH hollow structures were prepared on a mesoporous silica surface using simple chemical treatment.; The δ-FeOOH hollow structures are an effective Hg(II) adsorbent.; The adsorbent had good anti-interference ability to co-existing anions and cations.; A filter made from the adsorbent treated water effectively from a Brazilian river.;Luiz F. O. MaiaGuilherme LagesPatricia C. C. LadeiraBruno Lemos BatistaMárcia C. S. FariaLuiz C. A. OliveiraMárcio C. PereiraJairo Lisboa RodriguesIWA Publishingarticleadsorptionfeoohhollow structuresmercuryEnvironmental technology. Sanitary engineeringTD1-1066ENWater Practice and Technology, Vol 16, Iss 4, Pp 1224-1233 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
adsorption feooh hollow structures mercury Environmental technology. Sanitary engineering TD1-1066 |
spellingShingle |
adsorption feooh hollow structures mercury Environmental technology. Sanitary engineering TD1-1066 Luiz F. O. Maia Guilherme Lages Patricia C. C. Ladeira Bruno Lemos Batista Márcia C. S. Faria Luiz C. A. Oliveira Márcio C. Pereira Jairo Lisboa Rodrigues Development of hollow δ-FeOOH structures for mercury removal from water |
description |
δ-FeOOH, a magnetic iron oxyhydroxide, has a significant number of -OH groups on its surface. These provide an attractive platform for heavy metal species in contaminated water, giving it potential as an adsorbent. Its performance can be improved by increasing the number of active surface sites. δ-FeOOH hollow structures were synthesized on a mesoporous silica surface then treated with NaOH solution. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that structure synthesis was successful. δ-FeOOH, 5,27 nm, hollow crystals were produced with 63 m2 g−1 surface area and 20 nm average pore size. The point of zero charge was 4.72, which is beneficial for Hg(II) adsorption near neutral pH. The maximum Hg(II) adsorption capacity at pH 7 was determined as 89.1 mg g−1. The kinetics data were best fitted by a pseudo-second-order model with k2 equal 0,1151 g mg−1min−1. Finally, a nanomaterial filter was developed and used to remove mercury in water samples from a Brazilian river. HIGHLIGHTS
δ-FeOOH hollow structures were prepared on a mesoporous silica surface using simple chemical treatment.;
The δ-FeOOH hollow structures are an effective Hg(II) adsorbent.;
The adsorbent had good anti-interference ability to co-existing anions and cations.;
A filter made from the adsorbent treated water effectively from a Brazilian river.; |
format |
article |
author |
Luiz F. O. Maia Guilherme Lages Patricia C. C. Ladeira Bruno Lemos Batista Márcia C. S. Faria Luiz C. A. Oliveira Márcio C. Pereira Jairo Lisboa Rodrigues |
author_facet |
Luiz F. O. Maia Guilherme Lages Patricia C. C. Ladeira Bruno Lemos Batista Márcia C. S. Faria Luiz C. A. Oliveira Márcio C. Pereira Jairo Lisboa Rodrigues |
author_sort |
Luiz F. O. Maia |
title |
Development of hollow δ-FeOOH structures for mercury removal from water |
title_short |
Development of hollow δ-FeOOH structures for mercury removal from water |
title_full |
Development of hollow δ-FeOOH structures for mercury removal from water |
title_fullStr |
Development of hollow δ-FeOOH structures for mercury removal from water |
title_full_unstemmed |
Development of hollow δ-FeOOH structures for mercury removal from water |
title_sort |
development of hollow δ-feooh structures for mercury removal from water |
publisher |
IWA Publishing |
publishDate |
2021 |
url |
https://doaj.org/article/c387459d9fe74580ad94906784ec7c51 |
work_keys_str_mv |
AT luizfomaia developmentofhollowdfeoohstructuresformercuryremovalfromwater AT guilhermelages developmentofhollowdfeoohstructuresformercuryremovalfromwater AT patriciaccladeira developmentofhollowdfeoohstructuresformercuryremovalfromwater AT brunolemosbatista developmentofhollowdfeoohstructuresformercuryremovalfromwater AT marciacsfaria developmentofhollowdfeoohstructuresformercuryremovalfromwater AT luizcaoliveira developmentofhollowdfeoohstructuresformercuryremovalfromwater AT marciocpereira developmentofhollowdfeoohstructuresformercuryremovalfromwater AT jairolisboarodrigues developmentofhollowdfeoohstructuresformercuryremovalfromwater |
_version_ |
1718444006573080576 |