Targeted Delivery of Erythropoietin Hybridized with Magnetic Nanocarriers for the Treatment of Central Nervous System Injury: A Literature Review

Chang Ho Hwang Department of Physical and Rehabilitation Medicine, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Republic of KoreaCorrespondence: Chang Ho HwangDepartment of Physical and Rehabilitation Medicine, Chungnam National University S...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Hwang CH
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2020
Materias:
Acceso en línea:https://doaj.org/article/c389868d26d74112b4e2a99f9dda2319
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c389868d26d74112b4e2a99f9dda2319
record_format dspace
spelling oai:doaj.org-article:c389868d26d74112b4e2a99f9dda23192021-12-02T15:12:05ZTargeted Delivery of Erythropoietin Hybridized with Magnetic Nanocarriers for the Treatment of Central Nervous System Injury: A Literature Review1178-2013https://doaj.org/article/c389868d26d74112b4e2a99f9dda23192020-12-01T00:00:00Zhttps://www.dovepress.com/targeted-delivery-of-erythropoietin-hybridized-with-magnetic-nanocarri-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Chang Ho Hwang Department of Physical and Rehabilitation Medicine, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Republic of KoreaCorrespondence: Chang Ho HwangDepartment of Physical and Rehabilitation Medicine, Chungnam National University Sejong Hospital, Chungnam National University, College of Medicine, 30099, 20, Bodeum 7-Ro, Sejong, Republic of KoreaTel + 82-44-995-4715Fax +82-44-995-2461Email chhwang1220@cnu.ac.krAbstract: Although the incidence of central nervous system injuries has continued to rise, no promising treatments have been elucidated. Erythropoietin plays an important role in neuroprotection and neuroregeneration as well as in erythropoiesis. Moreover, the current worldwide use of erythropoietin in the treatment of hematologic diseases allows for its ready application in patients with central nervous system injuries. However, erythropoietin has a very short therapeutic time window (within 6– 8 hours) after injury, and it has both hematopoietic and nonhematopoietic receptors, which exhibit heterogenic and phylogenetic differences. These differences lead to limited amounts of erythropoietin binding to in situ erythropoietin receptors. The lack of high-quality evidence for clinical use and the promising results of in vitro/in vivo models necessitate fast targeted delivery agents such as nanocarriers. Among current nanocarriers, noncovalent polymer-entrapping or polymer-adsorbing erythropoietin obtained by nanospray drying may be the most promising. With the incorporation of magnetic nanocarriers into an erythropoietin polymer, spatiotemporal external magnetic navigation is another area of great interest for targeted delivery within the therapeutic time window. Intravenous administration is the most readily used route. Manufactured erythropoietin nanocarriers should be clearly characterized using bioengineering analyses of the in vivo size distribution and the quality of entrapment or adsorption. Further preclinical trials are required to increase the therapeutic bioavailability (in vivo biological identity alteration, passage through the lung capillaries or the blood brain barrier, and timely degradation followed by removal of the nanocarriers from the body) and decrease the adverse effects (hematological complications, neurotoxicity, and cytotoxicity), especially of the nanocarrier.Keywords: erythropoietin, nanoparticles, polymers, magnetics, central nervous system, regenerationHwang CHDove Medical Pressarticleerythropoietinnanoparticlespolymersmagneticscentral nervous systemregenerationMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 15, Pp 9683-9701 (2020)
institution DOAJ
collection DOAJ
language EN
topic erythropoietin
nanoparticles
polymers
magnetics
central nervous system
regeneration
Medicine (General)
R5-920
spellingShingle erythropoietin
nanoparticles
polymers
magnetics
central nervous system
regeneration
Medicine (General)
R5-920
Hwang CH
Targeted Delivery of Erythropoietin Hybridized with Magnetic Nanocarriers for the Treatment of Central Nervous System Injury: A Literature Review
description Chang Ho Hwang Department of Physical and Rehabilitation Medicine, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Republic of KoreaCorrespondence: Chang Ho HwangDepartment of Physical and Rehabilitation Medicine, Chungnam National University Sejong Hospital, Chungnam National University, College of Medicine, 30099, 20, Bodeum 7-Ro, Sejong, Republic of KoreaTel + 82-44-995-4715Fax +82-44-995-2461Email chhwang1220@cnu.ac.krAbstract: Although the incidence of central nervous system injuries has continued to rise, no promising treatments have been elucidated. Erythropoietin plays an important role in neuroprotection and neuroregeneration as well as in erythropoiesis. Moreover, the current worldwide use of erythropoietin in the treatment of hematologic diseases allows for its ready application in patients with central nervous system injuries. However, erythropoietin has a very short therapeutic time window (within 6– 8 hours) after injury, and it has both hematopoietic and nonhematopoietic receptors, which exhibit heterogenic and phylogenetic differences. These differences lead to limited amounts of erythropoietin binding to in situ erythropoietin receptors. The lack of high-quality evidence for clinical use and the promising results of in vitro/in vivo models necessitate fast targeted delivery agents such as nanocarriers. Among current nanocarriers, noncovalent polymer-entrapping or polymer-adsorbing erythropoietin obtained by nanospray drying may be the most promising. With the incorporation of magnetic nanocarriers into an erythropoietin polymer, spatiotemporal external magnetic navigation is another area of great interest for targeted delivery within the therapeutic time window. Intravenous administration is the most readily used route. Manufactured erythropoietin nanocarriers should be clearly characterized using bioengineering analyses of the in vivo size distribution and the quality of entrapment or adsorption. Further preclinical trials are required to increase the therapeutic bioavailability (in vivo biological identity alteration, passage through the lung capillaries or the blood brain barrier, and timely degradation followed by removal of the nanocarriers from the body) and decrease the adverse effects (hematological complications, neurotoxicity, and cytotoxicity), especially of the nanocarrier.Keywords: erythropoietin, nanoparticles, polymers, magnetics, central nervous system, regeneration
format article
author Hwang CH
author_facet Hwang CH
author_sort Hwang CH
title Targeted Delivery of Erythropoietin Hybridized with Magnetic Nanocarriers for the Treatment of Central Nervous System Injury: A Literature Review
title_short Targeted Delivery of Erythropoietin Hybridized with Magnetic Nanocarriers for the Treatment of Central Nervous System Injury: A Literature Review
title_full Targeted Delivery of Erythropoietin Hybridized with Magnetic Nanocarriers for the Treatment of Central Nervous System Injury: A Literature Review
title_fullStr Targeted Delivery of Erythropoietin Hybridized with Magnetic Nanocarriers for the Treatment of Central Nervous System Injury: A Literature Review
title_full_unstemmed Targeted Delivery of Erythropoietin Hybridized with Magnetic Nanocarriers for the Treatment of Central Nervous System Injury: A Literature Review
title_sort targeted delivery of erythropoietin hybridized with magnetic nanocarriers for the treatment of central nervous system injury: a literature review
publisher Dove Medical Press
publishDate 2020
url https://doaj.org/article/c389868d26d74112b4e2a99f9dda2319
work_keys_str_mv AT hwangch targeteddeliveryoferythropoietinhybridizedwithmagneticnanocarriersforthetreatmentofcentralnervoussysteminjuryaliteraturereview
_version_ 1718387658949918720