Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions
Pranam Chatterjee et al. present a novel computational platform for engineering peptide fusions that bind to the SARS-CoV-2 spike protein and tag it for proteasomal degradation. They experimentally validate an optimal variant in human cells, showing that it inhibits production of infection-competent...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c38f96c2ae5f4bc7940b60f8c64fa945 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c38f96c2ae5f4bc7940b60f8c64fa945 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c38f96c2ae5f4bc7940b60f8c64fa9452021-12-02T12:30:42ZTargeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions10.1038/s42003-020-01470-72399-3642https://doaj.org/article/c38f96c2ae5f4bc7940b60f8c64fa9452020-11-01T00:00:00Zhttps://doi.org/10.1038/s42003-020-01470-7https://doaj.org/toc/2399-3642Pranam Chatterjee et al. present a novel computational platform for engineering peptide fusions that bind to the SARS-CoV-2 spike protein and tag it for proteasomal degradation. They experimentally validate an optimal variant in human cells, showing that it inhibits production of infection-competent virus.Pranam ChatterjeeManvitha PonnapatiChristian KrammeAlexandru M. PlesaGeorge M. ChurchJoseph M. JacobsonNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 3, Iss 1, Pp 1-8 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Pranam Chatterjee Manvitha Ponnapati Christian Kramme Alexandru M. Plesa George M. Church Joseph M. Jacobson Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions |
description |
Pranam Chatterjee et al. present a novel computational platform for engineering peptide fusions that bind to the SARS-CoV-2 spike protein and tag it for proteasomal degradation. They experimentally validate an optimal variant in human cells, showing that it inhibits production of infection-competent virus. |
format |
article |
author |
Pranam Chatterjee Manvitha Ponnapati Christian Kramme Alexandru M. Plesa George M. Church Joseph M. Jacobson |
author_facet |
Pranam Chatterjee Manvitha Ponnapati Christian Kramme Alexandru M. Plesa George M. Church Joseph M. Jacobson |
author_sort |
Pranam Chatterjee |
title |
Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions |
title_short |
Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions |
title_full |
Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions |
title_fullStr |
Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions |
title_full_unstemmed |
Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions |
title_sort |
targeted intracellular degradation of sars-cov-2 via computationally optimized peptide fusions |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/c38f96c2ae5f4bc7940b60f8c64fa945 |
work_keys_str_mv |
AT pranamchatterjee targetedintracellulardegradationofsarscov2viacomputationallyoptimizedpeptidefusions AT manvithaponnapati targetedintracellulardegradationofsarscov2viacomputationallyoptimizedpeptidefusions AT christiankramme targetedintracellulardegradationofsarscov2viacomputationallyoptimizedpeptidefusions AT alexandrumplesa targetedintracellulardegradationofsarscov2viacomputationallyoptimizedpeptidefusions AT georgemchurch targetedintracellulardegradationofsarscov2viacomputationallyoptimizedpeptidefusions AT josephmjacobson targetedintracellulardegradationofsarscov2viacomputationallyoptimizedpeptidefusions |
_version_ |
1718394359369433088 |