Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions

Pranam Chatterjee et al. present a novel computational platform for engineering peptide fusions that bind to the SARS-CoV-2 spike protein and tag it for proteasomal degradation. They experimentally validate an optimal variant in human cells, showing that it inhibits production of infection-competent...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pranam Chatterjee, Manvitha Ponnapati, Christian Kramme, Alexandru M. Plesa, George M. Church, Joseph M. Jacobson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Acceso en línea:https://doaj.org/article/c38f96c2ae5f4bc7940b60f8c64fa945
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c38f96c2ae5f4bc7940b60f8c64fa945
record_format dspace
spelling oai:doaj.org-article:c38f96c2ae5f4bc7940b60f8c64fa9452021-12-02T12:30:42ZTargeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions10.1038/s42003-020-01470-72399-3642https://doaj.org/article/c38f96c2ae5f4bc7940b60f8c64fa9452020-11-01T00:00:00Zhttps://doi.org/10.1038/s42003-020-01470-7https://doaj.org/toc/2399-3642Pranam Chatterjee et al. present a novel computational platform for engineering peptide fusions that bind to the SARS-CoV-2 spike protein and tag it for proteasomal degradation. They experimentally validate an optimal variant in human cells, showing that it inhibits production of infection-competent virus.Pranam ChatterjeeManvitha PonnapatiChristian KrammeAlexandru M. PlesaGeorge M. ChurchJoseph M. JacobsonNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 3, Iss 1, Pp 1-8 (2020)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Pranam Chatterjee
Manvitha Ponnapati
Christian Kramme
Alexandru M. Plesa
George M. Church
Joseph M. Jacobson
Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions
description Pranam Chatterjee et al. present a novel computational platform for engineering peptide fusions that bind to the SARS-CoV-2 spike protein and tag it for proteasomal degradation. They experimentally validate an optimal variant in human cells, showing that it inhibits production of infection-competent virus.
format article
author Pranam Chatterjee
Manvitha Ponnapati
Christian Kramme
Alexandru M. Plesa
George M. Church
Joseph M. Jacobson
author_facet Pranam Chatterjee
Manvitha Ponnapati
Christian Kramme
Alexandru M. Plesa
George M. Church
Joseph M. Jacobson
author_sort Pranam Chatterjee
title Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions
title_short Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions
title_full Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions
title_fullStr Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions
title_full_unstemmed Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions
title_sort targeted intracellular degradation of sars-cov-2 via computationally optimized peptide fusions
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/c38f96c2ae5f4bc7940b60f8c64fa945
work_keys_str_mv AT pranamchatterjee targetedintracellulardegradationofsarscov2viacomputationallyoptimizedpeptidefusions
AT manvithaponnapati targetedintracellulardegradationofsarscov2viacomputationallyoptimizedpeptidefusions
AT christiankramme targetedintracellulardegradationofsarscov2viacomputationallyoptimizedpeptidefusions
AT alexandrumplesa targetedintracellulardegradationofsarscov2viacomputationallyoptimizedpeptidefusions
AT georgemchurch targetedintracellulardegradationofsarscov2viacomputationallyoptimizedpeptidefusions
AT josephmjacobson targetedintracellulardegradationofsarscov2viacomputationallyoptimizedpeptidefusions
_version_ 1718394359369433088