Fully automated detection and segmentation of intracranial aneurysms in subarachnoid hemorrhage on CTA using deep learning
Abstract In aneurysmal subarachnoid hemorrhage (aSAH), accurate diagnosis of aneurysm is essential for subsequent treatment to prevent rebleeding. However, aneurysm detection proves to be challenging and time-consuming. The purpose of this study was to develop and evaluate a deep learning model (DLM...
Guardado en:
Autores principales: | Rahil Shahzad, Lenhard Pennig, Lukas Goertz, Frank Thiele, Christoph Kabbasch, Marc Schlamann, Boris Krischek, David Maintz, Michael Perkuhn, Jan Borggrefe |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c3980af84cce4858a634dcf7b6dc04c8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Propensity score-adjusted analysis on stent-assisted coiling versus coiling alone for ruptured intracranial aneurysms
por: Lukas Goertz, et al.
Publicado: (2021) -
Comparison of Accuracy of Arrival-Time-Insensitive and Arrival-Time-Sensitive CTP Algorithms for Prediction of Infarct Tissue Volumes
por: Lenhard Pennig, et al.
Publicado: (2020) -
Modifiable Risk Factors for Intracranial Aneurysm and Aneurysmal Subarachnoid Hemorrhage: A Mendelian Randomization Study
por: Ville Karhunen, et al.
Publicado: (2021) -
Risk factors of chronic hydrocephalus after operation of aneurysmal subarachnoid hemorrhage
por: WEN Tangmin, et al.
Publicado: (2021) -
Association Between Glycemic Gap and In-hospital Outcomes in Aneurysmal Subarachnoid Hemorrhage
por: Philip Y. Sun, et al.
Publicado: (2021)