Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome
Summary: The dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host’s antibody response...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c3acb4d7657a4e0b8cad190d14971cdf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c3acb4d7657a4e0b8cad190d14971cdf |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c3acb4d7657a4e0b8cad190d14971cdf2021-11-04T04:29:11ZNanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome2211-124710.1016/j.celrep.2021.109923https://doaj.org/article/c3acb4d7657a4e0b8cad190d14971cdf2021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2211124721013966https://doaj.org/toc/2211-1247Summary: The dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host’s antibody response. To explore the epitope space of VSGs, we generate anti-VSG nanobodies and combine high-resolution structural analysis of VSG-nanobody complexes with binding assays on living cells, revealing that these camelid antibodies bind deeply inside the coat. One nanobody causes rapid loss of cellular motility, possibly due to blockage of VSG mobility on the coat, whose rapid endocytosis and exocytosis are mechanistically linked to Trypanosoma brucei propulsion and whose density is required for survival. Electron microscopy studies demonstrate that this loss of motility is accompanied by rapid formation and shedding of nanovesicles and nanotubes, suggesting that increased protein crowding on the dense membrane can be a driving force for membrane fission in living cells.Alexander HempelmannLaura HartlebMonique van StraatenHamidreza HashemiJohan P. ZeelenKevin BongersF. Nina PapavasiliouMarkus EngstlerC. Erec StebbinsNicola G. JonesElsevierarticleAfrican trypanosomehost-pathogen interactionvariant surface glycoproteinsimmune epitope mappingstructural biologynanovesicle formationBiology (General)QH301-705.5ENCell Reports, Vol 37, Iss 5, Pp 109923- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
African trypanosome host-pathogen interaction variant surface glycoproteins immune epitope mapping structural biology nanovesicle formation Biology (General) QH301-705.5 |
spellingShingle |
African trypanosome host-pathogen interaction variant surface glycoproteins immune epitope mapping structural biology nanovesicle formation Biology (General) QH301-705.5 Alexander Hempelmann Laura Hartleb Monique van Straaten Hamidreza Hashemi Johan P. Zeelen Kevin Bongers F. Nina Papavasiliou Markus Engstler C. Erec Stebbins Nicola G. Jones Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome |
description |
Summary: The dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host’s antibody response. To explore the epitope space of VSGs, we generate anti-VSG nanobodies and combine high-resolution structural analysis of VSG-nanobody complexes with binding assays on living cells, revealing that these camelid antibodies bind deeply inside the coat. One nanobody causes rapid loss of cellular motility, possibly due to blockage of VSG mobility on the coat, whose rapid endocytosis and exocytosis are mechanistically linked to Trypanosoma brucei propulsion and whose density is required for survival. Electron microscopy studies demonstrate that this loss of motility is accompanied by rapid formation and shedding of nanovesicles and nanotubes, suggesting that increased protein crowding on the dense membrane can be a driving force for membrane fission in living cells. |
format |
article |
author |
Alexander Hempelmann Laura Hartleb Monique van Straaten Hamidreza Hashemi Johan P. Zeelen Kevin Bongers F. Nina Papavasiliou Markus Engstler C. Erec Stebbins Nicola G. Jones |
author_facet |
Alexander Hempelmann Laura Hartleb Monique van Straaten Hamidreza Hashemi Johan P. Zeelen Kevin Bongers F. Nina Papavasiliou Markus Engstler C. Erec Stebbins Nicola G. Jones |
author_sort |
Alexander Hempelmann |
title |
Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome |
title_short |
Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome |
title_full |
Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome |
title_fullStr |
Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome |
title_full_unstemmed |
Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome |
title_sort |
nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the african trypanosome |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/c3acb4d7657a4e0b8cad190d14971cdf |
work_keys_str_mv |
AT alexanderhempelmann nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome AT laurahartleb nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome AT moniquevanstraaten nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome AT hamidrezahashemi nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome AT johanpzeelen nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome AT kevinbongers nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome AT fninapapavasiliou nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome AT markusengstler nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome AT cerecstebbins nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome AT nicolagjones nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome |
_version_ |
1718445299761938432 |