Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome

Summary: The dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host’s antibody response...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alexander Hempelmann, Laura Hartleb, Monique van Straaten, Hamidreza Hashemi, Johan P. Zeelen, Kevin Bongers, F. Nina Papavasiliou, Markus Engstler, C. Erec Stebbins, Nicola G. Jones
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/c3acb4d7657a4e0b8cad190d14971cdf
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c3acb4d7657a4e0b8cad190d14971cdf
record_format dspace
spelling oai:doaj.org-article:c3acb4d7657a4e0b8cad190d14971cdf2021-11-04T04:29:11ZNanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome2211-124710.1016/j.celrep.2021.109923https://doaj.org/article/c3acb4d7657a4e0b8cad190d14971cdf2021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2211124721013966https://doaj.org/toc/2211-1247Summary: The dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host’s antibody response. To explore the epitope space of VSGs, we generate anti-VSG nanobodies and combine high-resolution structural analysis of VSG-nanobody complexes with binding assays on living cells, revealing that these camelid antibodies bind deeply inside the coat. One nanobody causes rapid loss of cellular motility, possibly due to blockage of VSG mobility on the coat, whose rapid endocytosis and exocytosis are mechanistically linked to Trypanosoma brucei propulsion and whose density is required for survival. Electron microscopy studies demonstrate that this loss of motility is accompanied by rapid formation and shedding of nanovesicles and nanotubes, suggesting that increased protein crowding on the dense membrane can be a driving force for membrane fission in living cells.Alexander HempelmannLaura HartlebMonique van StraatenHamidreza HashemiJohan P. ZeelenKevin BongersF. Nina PapavasiliouMarkus EngstlerC. Erec StebbinsNicola G. JonesElsevierarticleAfrican trypanosomehost-pathogen interactionvariant surface glycoproteinsimmune epitope mappingstructural biologynanovesicle formationBiology (General)QH301-705.5ENCell Reports, Vol 37, Iss 5, Pp 109923- (2021)
institution DOAJ
collection DOAJ
language EN
topic African trypanosome
host-pathogen interaction
variant surface glycoproteins
immune epitope mapping
structural biology
nanovesicle formation
Biology (General)
QH301-705.5
spellingShingle African trypanosome
host-pathogen interaction
variant surface glycoproteins
immune epitope mapping
structural biology
nanovesicle formation
Biology (General)
QH301-705.5
Alexander Hempelmann
Laura Hartleb
Monique van Straaten
Hamidreza Hashemi
Johan P. Zeelen
Kevin Bongers
F. Nina Papavasiliou
Markus Engstler
C. Erec Stebbins
Nicola G. Jones
Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome
description Summary: The dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host’s antibody response. To explore the epitope space of VSGs, we generate anti-VSG nanobodies and combine high-resolution structural analysis of VSG-nanobody complexes with binding assays on living cells, revealing that these camelid antibodies bind deeply inside the coat. One nanobody causes rapid loss of cellular motility, possibly due to blockage of VSG mobility on the coat, whose rapid endocytosis and exocytosis are mechanistically linked to Trypanosoma brucei propulsion and whose density is required for survival. Electron microscopy studies demonstrate that this loss of motility is accompanied by rapid formation and shedding of nanovesicles and nanotubes, suggesting that increased protein crowding on the dense membrane can be a driving force for membrane fission in living cells.
format article
author Alexander Hempelmann
Laura Hartleb
Monique van Straaten
Hamidreza Hashemi
Johan P. Zeelen
Kevin Bongers
F. Nina Papavasiliou
Markus Engstler
C. Erec Stebbins
Nicola G. Jones
author_facet Alexander Hempelmann
Laura Hartleb
Monique van Straaten
Hamidreza Hashemi
Johan P. Zeelen
Kevin Bongers
F. Nina Papavasiliou
Markus Engstler
C. Erec Stebbins
Nicola G. Jones
author_sort Alexander Hempelmann
title Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome
title_short Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome
title_full Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome
title_fullStr Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome
title_full_unstemmed Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome
title_sort nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the african trypanosome
publisher Elsevier
publishDate 2021
url https://doaj.org/article/c3acb4d7657a4e0b8cad190d14971cdf
work_keys_str_mv AT alexanderhempelmann nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome
AT laurahartleb nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome
AT moniquevanstraaten nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome
AT hamidrezahashemi nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome
AT johanpzeelen nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome
AT kevinbongers nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome
AT fninapapavasiliou nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome
AT markusengstler nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome
AT cerecstebbins nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome
AT nicolagjones nanobodymediatedmacromolecularcrowdinginducesmembranefissionandremodelingintheafricantrypanosome
_version_ 1718445299761938432