Improving the Accuracy of Network Intrusion Detection with Causal Machine Learning
In recent years, machine learning (ML) algorithms have been approved effective in the intrusion detection. However, as the ML algorithms are mainly applied to evaluate the anomaly of the network, the detection accuracy for cyberattacks with multiple types cannot be fully guaranteed. The existing alg...
Guardado en:
Autores principales: | Zengri Zeng, Wei Peng, Baokang Zhao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi-Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c3af11d54071445a8ff31338efc7b075 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Network Intrusion Detection Model Based on Improved BYOL Self-Supervised Learning
por: Zhendong Wang, et al.
Publicado: (2021) -
A Survey of Few-Shot Learning: An Effective Method for Intrusion Detection
por: Ruixue Duan, et al.
Publicado: (2021) -
A Method of Recommending Physical Education Network Course Resources Based on Machine Learning Algorithms
por: Fu Wei
Publicado: (2021) -
A Novel Model for Anomaly Detection in Network Traffic Based on Support Vector Machine and Clustering
por: Qian Ma, et al.
Publicado: (2021) -
Intrusion Detection Algorithm and Simulation of Wireless Sensor Network under Internet Environment
por: Jing Jin
Publicado: (2021)