Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries
Abstract The rapidly increasing demand for efficient energy storage systems in the last two decades has stimulated enormous efforts to the development of high-capacity, high-power, durable lithium ion batteries. Inherent to the high-capacity electrode materials is material degradation and failure du...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c3b461b3d63b49119cb141571222dce9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c3b461b3d63b49119cb141571222dce9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c3b461b3d63b49119cb141571222dce92021-12-02T16:19:45ZChemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries10.1038/s41524-017-0009-z2057-3960https://doaj.org/article/c3b461b3d63b49119cb141571222dce92017-02-01T00:00:00Zhttps://doi.org/10.1038/s41524-017-0009-zhttps://doaj.org/toc/2057-3960Abstract The rapidly increasing demand for efficient energy storage systems in the last two decades has stimulated enormous efforts to the development of high-capacity, high-power, durable lithium ion batteries. Inherent to the high-capacity electrode materials is material degradation and failure due to the large volumetric changes during the electrochemical cycling, causing fast capacity decay and low cycle life. This review surveys recent progress in continuum-level computational modeling of the degradation mechanisms of high-capacity anode materials for lithium-ion batteries. Using silicon (Si) as an example, we highlight the strong coupling between electrochemical kinetics and mechanical stress in the degradation process. We show that the coupling phenomena can be tailored through a set of materials design strategies, including surface coating and porosity, presenting effective methods to mitigate the degradation. Validated by the experimental data, the modeling results lay down a foundation for engineering, diagnosis, and optimization of high-performance lithium ion batteries.Sulin ZhangNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 3, Iss 1, Pp 1-11 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 Computer software QA76.75-76.765 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Computer software QA76.75-76.765 Sulin Zhang Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries |
description |
Abstract The rapidly increasing demand for efficient energy storage systems in the last two decades has stimulated enormous efforts to the development of high-capacity, high-power, durable lithium ion batteries. Inherent to the high-capacity electrode materials is material degradation and failure due to the large volumetric changes during the electrochemical cycling, causing fast capacity decay and low cycle life. This review surveys recent progress in continuum-level computational modeling of the degradation mechanisms of high-capacity anode materials for lithium-ion batteries. Using silicon (Si) as an example, we highlight the strong coupling between electrochemical kinetics and mechanical stress in the degradation process. We show that the coupling phenomena can be tailored through a set of materials design strategies, including surface coating and porosity, presenting effective methods to mitigate the degradation. Validated by the experimental data, the modeling results lay down a foundation for engineering, diagnosis, and optimization of high-performance lithium ion batteries. |
format |
article |
author |
Sulin Zhang |
author_facet |
Sulin Zhang |
author_sort |
Sulin Zhang |
title |
Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries |
title_short |
Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries |
title_full |
Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries |
title_fullStr |
Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries |
title_full_unstemmed |
Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries |
title_sort |
chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/c3b461b3d63b49119cb141571222dce9 |
work_keys_str_mv |
AT sulinzhang chemomechanicalmodelingoflithiationinducedfailureinhighvolumechangeelectrodematerialsforlithiumionbatteries |
_version_ |
1718384198661701632 |