In situ electroporation of mammalian cells through SiO2 thin film capacitive microelectrodes
Abstract Electroporation is a widely used non-viral technique for the delivery of molecules, including nucleic acids, into cells. Recently, electronic microsystems that miniaturize the electroporation machinery have been developed as a new tool for genetic manipulation of cells in vitro, by integrat...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c3b8b18974f3433685404d5ef483bb5b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c3b8b18974f3433685404d5ef483bb5b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c3b8b18974f3433685404d5ef483bb5b2021-12-02T16:26:38ZIn situ electroporation of mammalian cells through SiO2 thin film capacitive microelectrodes10.1038/s41598-021-94620-82045-2322https://doaj.org/article/c3b8b18974f3433685404d5ef483bb5b2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-94620-8https://doaj.org/toc/2045-2322Abstract Electroporation is a widely used non-viral technique for the delivery of molecules, including nucleic acids, into cells. Recently, electronic microsystems that miniaturize the electroporation machinery have been developed as a new tool for genetic manipulation of cells in vitro, by integrating metal microelectrodes in the culture substrate and enabling electroporation in-situ. We report that non-faradic SiO2 thin film-insulated microelectrodes can be used for reliable and spatially selective in-situ electroporation of mammalian cells. CHO-K1 and SH-SY5Y cell lines and primary neuronal cultures were electroporated by application of short and low amplitude voltage transients leading to cell electroporation by capacitive currents. We demonstrate reliable delivery of DNA plasmids and exogenous gene expression, accompanied by high spatial selectivity and cell viability, even with differentiated neurons. Finally, we show that SiO2 thin film-insulated microelectrodes support a double and serial transfection of the targeted cells.M. MaschiettoM. Dal MaschioS. GirardiS. VassanelliNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q M. Maschietto M. Dal Maschio S. Girardi S. Vassanelli In situ electroporation of mammalian cells through SiO2 thin film capacitive microelectrodes |
description |
Abstract Electroporation is a widely used non-viral technique for the delivery of molecules, including nucleic acids, into cells. Recently, electronic microsystems that miniaturize the electroporation machinery have been developed as a new tool for genetic manipulation of cells in vitro, by integrating metal microelectrodes in the culture substrate and enabling electroporation in-situ. We report that non-faradic SiO2 thin film-insulated microelectrodes can be used for reliable and spatially selective in-situ electroporation of mammalian cells. CHO-K1 and SH-SY5Y cell lines and primary neuronal cultures were electroporated by application of short and low amplitude voltage transients leading to cell electroporation by capacitive currents. We demonstrate reliable delivery of DNA plasmids and exogenous gene expression, accompanied by high spatial selectivity and cell viability, even with differentiated neurons. Finally, we show that SiO2 thin film-insulated microelectrodes support a double and serial transfection of the targeted cells. |
format |
article |
author |
M. Maschietto M. Dal Maschio S. Girardi S. Vassanelli |
author_facet |
M. Maschietto M. Dal Maschio S. Girardi S. Vassanelli |
author_sort |
M. Maschietto |
title |
In situ electroporation of mammalian cells through SiO2 thin film capacitive microelectrodes |
title_short |
In situ electroporation of mammalian cells through SiO2 thin film capacitive microelectrodes |
title_full |
In situ electroporation of mammalian cells through SiO2 thin film capacitive microelectrodes |
title_fullStr |
In situ electroporation of mammalian cells through SiO2 thin film capacitive microelectrodes |
title_full_unstemmed |
In situ electroporation of mammalian cells through SiO2 thin film capacitive microelectrodes |
title_sort |
in situ electroporation of mammalian cells through sio2 thin film capacitive microelectrodes |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/c3b8b18974f3433685404d5ef483bb5b |
work_keys_str_mv |
AT mmaschietto insituelectroporationofmammaliancellsthroughsio2thinfilmcapacitivemicroelectrodes AT mdalmaschio insituelectroporationofmammaliancellsthroughsio2thinfilmcapacitivemicroelectrodes AT sgirardi insituelectroporationofmammaliancellsthroughsio2thinfilmcapacitivemicroelectrodes AT svassanelli insituelectroporationofmammaliancellsthroughsio2thinfilmcapacitivemicroelectrodes |
_version_ |
1718384015777464320 |