A novel probabilistic generator for large-scale gene association networks.
<h4>Motivation</h4>Gene expression data provide an opportunity for reverse-engineering gene-gene associations using network inference methods. However, it is difficult to assess the performance of these methods because the true underlying network is unknown in real data. Current benchmar...
Guardado en:
Autores principales: | Tyler Grimes, Somnath Datta |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c3d08e3a71be49e1b6f07ff421531729 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A novel probabilistic generator for large-scale gene association networks
por: Tyler Grimes, et al.
Publicado: (2021) -
Synthetic data generation with probabilistic Bayesian Networks
por: Grigoriy Gogoshin, et al.
Publicado: (2021) -
optPBN: an optimisation toolbox for probabilistic Boolean networks.
por: Panuwat Trairatphisan, et al.
Publicado: (2014) -
Probabilistic diffusion tractography reveals improvement of structural network in musicians.
por: Jianfu Li, et al.
Publicado: (2014) -
The generative capacity of probabilistic protein sequence models
por: Francisco McGee, et al.
Publicado: (2021)