A neural pathomics framework for classifying colorectal cancer histopathology images based on wavelet multi-scale texture analysis

Abstract Colorectal cancer (CRC) constitutes the third most commonly diagnosed cancer in males and the second in females. Precise histopathological classification of CRC tissue pathology is the cornerstone not only for diagnosis but also for patients’ management decision making. An automated system...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Eleftherios Trivizakis, Georgios S. Ioannidis, Ioannis Souglakos, Apostolos H. Karantanas, Maria Tzardi, Kostas Marias
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c3ed0f888ecf4796aa5bdfd8a73f82b8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c3ed0f888ecf4796aa5bdfd8a73f82b8
record_format dspace
spelling oai:doaj.org-article:c3ed0f888ecf4796aa5bdfd8a73f82b82021-12-02T16:31:02ZA neural pathomics framework for classifying colorectal cancer histopathology images based on wavelet multi-scale texture analysis10.1038/s41598-021-94781-62045-2322https://doaj.org/article/c3ed0f888ecf4796aa5bdfd8a73f82b82021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-94781-6https://doaj.org/toc/2045-2322Abstract Colorectal cancer (CRC) constitutes the third most commonly diagnosed cancer in males and the second in females. Precise histopathological classification of CRC tissue pathology is the cornerstone not only for diagnosis but also for patients’ management decision making. An automated system able to accurately classify different CRC tissue regions may increase diagnostic precision and alleviate clinical workload. However, tissue classification is a challenging task due to the variability in morphological and textural characteristics present in histopathology images. In this study, an artificial neural network was trained to classify between eight classes of CRC tissue image patches derived from a public dataset with 5000 CRC histopathology image tiles. A total of 532 multi-level pathomics features examined at different scales were extracted by visual descriptors such as local binary patterns, wavelet transforms and Gabor filters. An exhaustive evaluation involving a variety of wavelet families and parameters was performed in order to shed light on the impact of scale on pathomics based CRC tissue differentiation. Our model achieved a performance accuracy of 95.3% with tenfold cross validation demonstrating superior performance compared to 87.4% reported in recent studies. Furthermore, we experimentally showed that the first and the second levels of the wavelet approximations can be used without compromising classification performance.Eleftherios TrivizakisGeorgios S. IoannidisIoannis SouglakosApostolos H. KarantanasMaria TzardiKostas MariasNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Eleftherios Trivizakis
Georgios S. Ioannidis
Ioannis Souglakos
Apostolos H. Karantanas
Maria Tzardi
Kostas Marias
A neural pathomics framework for classifying colorectal cancer histopathology images based on wavelet multi-scale texture analysis
description Abstract Colorectal cancer (CRC) constitutes the third most commonly diagnosed cancer in males and the second in females. Precise histopathological classification of CRC tissue pathology is the cornerstone not only for diagnosis but also for patients’ management decision making. An automated system able to accurately classify different CRC tissue regions may increase diagnostic precision and alleviate clinical workload. However, tissue classification is a challenging task due to the variability in morphological and textural characteristics present in histopathology images. In this study, an artificial neural network was trained to classify between eight classes of CRC tissue image patches derived from a public dataset with 5000 CRC histopathology image tiles. A total of 532 multi-level pathomics features examined at different scales were extracted by visual descriptors such as local binary patterns, wavelet transforms and Gabor filters. An exhaustive evaluation involving a variety of wavelet families and parameters was performed in order to shed light on the impact of scale on pathomics based CRC tissue differentiation. Our model achieved a performance accuracy of 95.3% with tenfold cross validation demonstrating superior performance compared to 87.4% reported in recent studies. Furthermore, we experimentally showed that the first and the second levels of the wavelet approximations can be used without compromising classification performance.
format article
author Eleftherios Trivizakis
Georgios S. Ioannidis
Ioannis Souglakos
Apostolos H. Karantanas
Maria Tzardi
Kostas Marias
author_facet Eleftherios Trivizakis
Georgios S. Ioannidis
Ioannis Souglakos
Apostolos H. Karantanas
Maria Tzardi
Kostas Marias
author_sort Eleftherios Trivizakis
title A neural pathomics framework for classifying colorectal cancer histopathology images based on wavelet multi-scale texture analysis
title_short A neural pathomics framework for classifying colorectal cancer histopathology images based on wavelet multi-scale texture analysis
title_full A neural pathomics framework for classifying colorectal cancer histopathology images based on wavelet multi-scale texture analysis
title_fullStr A neural pathomics framework for classifying colorectal cancer histopathology images based on wavelet multi-scale texture analysis
title_full_unstemmed A neural pathomics framework for classifying colorectal cancer histopathology images based on wavelet multi-scale texture analysis
title_sort neural pathomics framework for classifying colorectal cancer histopathology images based on wavelet multi-scale texture analysis
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/c3ed0f888ecf4796aa5bdfd8a73f82b8
work_keys_str_mv AT eleftheriostrivizakis aneuralpathomicsframeworkforclassifyingcolorectalcancerhistopathologyimagesbasedonwaveletmultiscaletextureanalysis
AT georgiossioannidis aneuralpathomicsframeworkforclassifyingcolorectalcancerhistopathologyimagesbasedonwaveletmultiscaletextureanalysis
AT ioannissouglakos aneuralpathomicsframeworkforclassifyingcolorectalcancerhistopathologyimagesbasedonwaveletmultiscaletextureanalysis
AT apostoloshkarantanas aneuralpathomicsframeworkforclassifyingcolorectalcancerhistopathologyimagesbasedonwaveletmultiscaletextureanalysis
AT mariatzardi aneuralpathomicsframeworkforclassifyingcolorectalcancerhistopathologyimagesbasedonwaveletmultiscaletextureanalysis
AT kostasmarias aneuralpathomicsframeworkforclassifyingcolorectalcancerhistopathologyimagesbasedonwaveletmultiscaletextureanalysis
AT eleftheriostrivizakis neuralpathomicsframeworkforclassifyingcolorectalcancerhistopathologyimagesbasedonwaveletmultiscaletextureanalysis
AT georgiossioannidis neuralpathomicsframeworkforclassifyingcolorectalcancerhistopathologyimagesbasedonwaveletmultiscaletextureanalysis
AT ioannissouglakos neuralpathomicsframeworkforclassifyingcolorectalcancerhistopathologyimagesbasedonwaveletmultiscaletextureanalysis
AT apostoloshkarantanas neuralpathomicsframeworkforclassifyingcolorectalcancerhistopathologyimagesbasedonwaveletmultiscaletextureanalysis
AT mariatzardi neuralpathomicsframeworkforclassifyingcolorectalcancerhistopathologyimagesbasedonwaveletmultiscaletextureanalysis
AT kostasmarias neuralpathomicsframeworkforclassifyingcolorectalcancerhistopathologyimagesbasedonwaveletmultiscaletextureanalysis
_version_ 1718383898494238720