A two-phase innate host response to alphavirus infection identified by mRNP-tagging in vivo.
A concept fundamental to viral pathogenesis is that infection induces specific changes within the host cell, within specific tissues, or within the entire animal. These changes are reflected in a cascade of altered transcription patterns evident during infection. However, elucidation of this cascade...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2007
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c4134ec5a1674c579635d18a29172451 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c4134ec5a1674c579635d18a29172451 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c4134ec5a1674c579635d18a291724512021-11-25T05:46:47ZA two-phase innate host response to alphavirus infection identified by mRNP-tagging in vivo.1553-73661553-737410.1371/journal.ppat.0030199https://doaj.org/article/c4134ec5a1674c579635d18a291724512007-12-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/18215114/pdf/?tool=EBIhttps://doaj.org/toc/1553-7366https://doaj.org/toc/1553-7374A concept fundamental to viral pathogenesis is that infection induces specific changes within the host cell, within specific tissues, or within the entire animal. These changes are reflected in a cascade of altered transcription patterns evident during infection. However, elucidation of this cascade in vivo has been limited by a general inability to distinguish changes occurring in the minority of infected cells from those in surrounding uninfected cells. To circumvent this inherent limitation of traditional gene expression profiling methods, an innovative mRNP-tagging technique was implemented to isolate host mRNA specifically from infected cells in vitro as well as in vivo following Venezuelan equine encephalitis virus (VEE) infection. This technique facilitated a direct characterization of the host defense response specifically within the first cells infected with VEE, while simultaneous total RNA analysis assessed the collective response of both the infected and uninfected cells. The result was a unique, multifaceted profile of the early response to VEE infection in primary dendritic cells, as well as in the draining lymph node, the initially targeted tissue in the mouse model. A dynamic environment of complex interactions was revealed, and suggested a two-step innate response in which activation of a subset of host genes in infected cells subsequently leads to activation of the surrounding uninfected cells. Our findings suggest that the application of viral mRNP-tagging systems, as introduced here, will facilitate a much more detailed understanding of the highly coordinated host response to infectious agents.Jennifer L KonopkaLuiz O PenalvaJoseph M ThompsonLaura J WhiteClayton W BeardJack D KeeneRobert E JohnstonPublic Library of Science (PLoS)articleImmunologic diseases. AllergyRC581-607Biology (General)QH301-705.5ENPLoS Pathogens, Vol 3, Iss 12, p e199 (2007) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Immunologic diseases. Allergy RC581-607 Biology (General) QH301-705.5 |
spellingShingle |
Immunologic diseases. Allergy RC581-607 Biology (General) QH301-705.5 Jennifer L Konopka Luiz O Penalva Joseph M Thompson Laura J White Clayton W Beard Jack D Keene Robert E Johnston A two-phase innate host response to alphavirus infection identified by mRNP-tagging in vivo. |
description |
A concept fundamental to viral pathogenesis is that infection induces specific changes within the host cell, within specific tissues, or within the entire animal. These changes are reflected in a cascade of altered transcription patterns evident during infection. However, elucidation of this cascade in vivo has been limited by a general inability to distinguish changes occurring in the minority of infected cells from those in surrounding uninfected cells. To circumvent this inherent limitation of traditional gene expression profiling methods, an innovative mRNP-tagging technique was implemented to isolate host mRNA specifically from infected cells in vitro as well as in vivo following Venezuelan equine encephalitis virus (VEE) infection. This technique facilitated a direct characterization of the host defense response specifically within the first cells infected with VEE, while simultaneous total RNA analysis assessed the collective response of both the infected and uninfected cells. The result was a unique, multifaceted profile of the early response to VEE infection in primary dendritic cells, as well as in the draining lymph node, the initially targeted tissue in the mouse model. A dynamic environment of complex interactions was revealed, and suggested a two-step innate response in which activation of a subset of host genes in infected cells subsequently leads to activation of the surrounding uninfected cells. Our findings suggest that the application of viral mRNP-tagging systems, as introduced here, will facilitate a much more detailed understanding of the highly coordinated host response to infectious agents. |
format |
article |
author |
Jennifer L Konopka Luiz O Penalva Joseph M Thompson Laura J White Clayton W Beard Jack D Keene Robert E Johnston |
author_facet |
Jennifer L Konopka Luiz O Penalva Joseph M Thompson Laura J White Clayton W Beard Jack D Keene Robert E Johnston |
author_sort |
Jennifer L Konopka |
title |
A two-phase innate host response to alphavirus infection identified by mRNP-tagging in vivo. |
title_short |
A two-phase innate host response to alphavirus infection identified by mRNP-tagging in vivo. |
title_full |
A two-phase innate host response to alphavirus infection identified by mRNP-tagging in vivo. |
title_fullStr |
A two-phase innate host response to alphavirus infection identified by mRNP-tagging in vivo. |
title_full_unstemmed |
A two-phase innate host response to alphavirus infection identified by mRNP-tagging in vivo. |
title_sort |
two-phase innate host response to alphavirus infection identified by mrnp-tagging in vivo. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2007 |
url |
https://doaj.org/article/c4134ec5a1674c579635d18a29172451 |
work_keys_str_mv |
AT jenniferlkonopka atwophaseinnatehostresponsetoalphavirusinfectionidentifiedbymrnptagginginvivo AT luizopenalva atwophaseinnatehostresponsetoalphavirusinfectionidentifiedbymrnptagginginvivo AT josephmthompson atwophaseinnatehostresponsetoalphavirusinfectionidentifiedbymrnptagginginvivo AT laurajwhite atwophaseinnatehostresponsetoalphavirusinfectionidentifiedbymrnptagginginvivo AT claytonwbeard atwophaseinnatehostresponsetoalphavirusinfectionidentifiedbymrnptagginginvivo AT jackdkeene atwophaseinnatehostresponsetoalphavirusinfectionidentifiedbymrnptagginginvivo AT robertejohnston atwophaseinnatehostresponsetoalphavirusinfectionidentifiedbymrnptagginginvivo AT jenniferlkonopka twophaseinnatehostresponsetoalphavirusinfectionidentifiedbymrnptagginginvivo AT luizopenalva twophaseinnatehostresponsetoalphavirusinfectionidentifiedbymrnptagginginvivo AT josephmthompson twophaseinnatehostresponsetoalphavirusinfectionidentifiedbymrnptagginginvivo AT laurajwhite twophaseinnatehostresponsetoalphavirusinfectionidentifiedbymrnptagginginvivo AT claytonwbeard twophaseinnatehostresponsetoalphavirusinfectionidentifiedbymrnptagginginvivo AT jackdkeene twophaseinnatehostresponsetoalphavirusinfectionidentifiedbymrnptagginginvivo AT robertejohnston twophaseinnatehostresponsetoalphavirusinfectionidentifiedbymrnptagginginvivo |
_version_ |
1718414482059821056 |