Unsupervised Anomaly Approach to Pedestrian Age Classification from Surveillance Cameras Using an Adversarial Model with Skip-Connections
Anomaly detection is an active research area within the machine learning and scene understanding fields. Despite the ambiguous definition, anomaly detection is considered an outlier detection in a given data based on normality constraints. The biggest problem in real-world anomaly detection applicat...
Guardado en:
Autores principales: | Husnu Baris Baydargil, Jangsik Park, Ibrahim Furkan Ince |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c41d3f73adc04e91b5517a74029630e8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Advances in Adversarial Attacks and Defenses in Computer Vision: A Survey
por: Naveed Akhtar, et al.
Publicado: (2021) -
Detect Adversarial Attacks Against Deep Neural Networks With GPU Monitoring
por: Tommaso Zoppi, et al.
Publicado: (2021) -
Search-and-Attack: Temporally Sparse Adversarial Perturbations on Videos
por: Hwan Heo, et al.
Publicado: (2021) -
A Generative Adversarial Network Structure for Learning with Small Numerical Data Sets
por: Der-Chiang Li, et al.
Publicado: (2021) -
Machine Translation in Low-Resource Languages by an Adversarial Neural Network
por: Mengtao Sun, et al.
Publicado: (2021)