Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide
Izumi Kanayama,1 Hirofumi Miyaji,1 Hiroko Takita,2 Erika Nishida,1 Maiko Tsuji,3 Bunshi Fugetsu,4,5 Ling Sun,4,5 Kana Inoue,1 Asako Ibara,1 Tsukasa Akasaka,6 Tsutomu Sugaya,1 Masamitsu Kawanami1 1Department of Periodontology and Endodontology, 2Support Section for Education and Research, Graduate...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c4250663fcb24c749e9651c84f359e12 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c4250663fcb24c749e9651c84f359e12 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c4250663fcb24c749e9651c84f359e122021-12-02T02:10:25ZComparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide1178-2013https://doaj.org/article/c4250663fcb24c749e9651c84f359e122014-07-01T00:00:00Zhttp://www.dovepress.com/comparative-study-of-bioactivity-of-collagen-scaffolds-coated-with-gra-a17569https://doaj.org/toc/1178-2013 Izumi Kanayama,1 Hirofumi Miyaji,1 Hiroko Takita,2 Erika Nishida,1 Maiko Tsuji,3 Bunshi Fugetsu,4,5 Ling Sun,4,5 Kana Inoue,1 Asako Ibara,1 Tsukasa Akasaka,6 Tsutomu Sugaya,1 Masamitsu Kawanami1 1Department of Periodontology and Endodontology, 2Support Section for Education and Research, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan; 3Mitsubishi Gas Chemical Company, Inc., Tokyo, Japan; 4Division of Frontier Research, Research Department, Creative Research Institution Sousei, 5Graduate School of Environmental Science, 6Department of Biomedical, Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan Background: Graphene oxide (GO) is a single layer carbon sheet with a thickness of less than 1 nm. GO has good dispersibility due to surface modifications with numerous functional groups. Reduced graphene oxide (RGO) is produced via the reduction of GO, and has lower dispersibility. We examined the bioactivity of GO and RGO films, and collagen scaffolds coated with GO and RGO. Methods: GO and RGO films were fabricated on a culture dish. Some GO films were chemically reduced using either ascorbic acid or sodium hydrosulfite solution, resulting in preparation of RGO films. The biological properties of each film were evaluated by scanning electron microscopy (SEM), atomic force microscopy, calcium adsorption tests, and MC3T3-E1 cell seeding. Subsequently, GO- and RGO-coated collagen scaffolds were prepared and characterized by SEM and compression tests. Each scaffold was implanted into subcutaneous tissue on the backs of rats. Measurements of DNA content and cell ingrowth areas of implanted scaffolds were performed 10 days post-surgery.Results: The results show that GO and RGO possess different biological properties. Calcium adsorption and alkaline phosphatase activity were strongly enhanced by RGO, suggesting that RGO is effective for osteogenic differentiation. SEM showed that RGO-modified collagen scaffolds have rough, irregular surfaces. The compressive strengths of GO- and RGO-coated scaffolds were approximately 1.7-fold and 2.7-fold greater, respectively, when compared with the non-coated scaffold. Tissue ingrowth rate was 39% in RGO-coated scaffolds, as compared to 20% in the GO-coated scaffold and 16% in the non-coated scaffold.Conclusion: In summary, these results suggest that GO and RGO coatings provide different biological properties to collagen scaffolds, and that RGO-coated scaffolds are more bioactive than GO-coated scaffolds. Keywords: GO, RGO, tissue engineering, regenerative scaffold, cell ingrowth, biomaterialsKanayama IMiyaji HTakita HNishida ETsuji MFugetsu BSun LInoue KIbara AAkasaka TSugaya TKawanami MDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2014, Iss Issue 1, Pp 3363-3373 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Kanayama I Miyaji H Takita H Nishida E Tsuji M Fugetsu B Sun L Inoue K Ibara A Akasaka T Sugaya T Kawanami M Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide |
description |
Izumi Kanayama,1 Hirofumi Miyaji,1 Hiroko Takita,2 Erika Nishida,1 Maiko Tsuji,3 Bunshi Fugetsu,4,5 Ling Sun,4,5 Kana Inoue,1 Asako Ibara,1 Tsukasa Akasaka,6 Tsutomu Sugaya,1 Masamitsu Kawanami1 1Department of Periodontology and Endodontology, 2Support Section for Education and Research, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan; 3Mitsubishi Gas Chemical Company, Inc., Tokyo, Japan; 4Division of Frontier Research, Research Department, Creative Research Institution Sousei, 5Graduate School of Environmental Science, 6Department of Biomedical, Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan Background: Graphene oxide (GO) is a single layer carbon sheet with a thickness of less than 1 nm. GO has good dispersibility due to surface modifications with numerous functional groups. Reduced graphene oxide (RGO) is produced via the reduction of GO, and has lower dispersibility. We examined the bioactivity of GO and RGO films, and collagen scaffolds coated with GO and RGO. Methods: GO and RGO films were fabricated on a culture dish. Some GO films were chemically reduced using either ascorbic acid or sodium hydrosulfite solution, resulting in preparation of RGO films. The biological properties of each film were evaluated by scanning electron microscopy (SEM), atomic force microscopy, calcium adsorption tests, and MC3T3-E1 cell seeding. Subsequently, GO- and RGO-coated collagen scaffolds were prepared and characterized by SEM and compression tests. Each scaffold was implanted into subcutaneous tissue on the backs of rats. Measurements of DNA content and cell ingrowth areas of implanted scaffolds were performed 10 days post-surgery.Results: The results show that GO and RGO possess different biological properties. Calcium adsorption and alkaline phosphatase activity were strongly enhanced by RGO, suggesting that RGO is effective for osteogenic differentiation. SEM showed that RGO-modified collagen scaffolds have rough, irregular surfaces. The compressive strengths of GO- and RGO-coated scaffolds were approximately 1.7-fold and 2.7-fold greater, respectively, when compared with the non-coated scaffold. Tissue ingrowth rate was 39% in RGO-coated scaffolds, as compared to 20% in the GO-coated scaffold and 16% in the non-coated scaffold.Conclusion: In summary, these results suggest that GO and RGO coatings provide different biological properties to collagen scaffolds, and that RGO-coated scaffolds are more bioactive than GO-coated scaffolds. Keywords: GO, RGO, tissue engineering, regenerative scaffold, cell ingrowth, biomaterials |
format |
article |
author |
Kanayama I Miyaji H Takita H Nishida E Tsuji M Fugetsu B Sun L Inoue K Ibara A Akasaka T Sugaya T Kawanami M |
author_facet |
Kanayama I Miyaji H Takita H Nishida E Tsuji M Fugetsu B Sun L Inoue K Ibara A Akasaka T Sugaya T Kawanami M |
author_sort |
Kanayama I |
title |
Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide |
title_short |
Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide |
title_full |
Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide |
title_fullStr |
Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide |
title_full_unstemmed |
Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide |
title_sort |
comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide |
publisher |
Dove Medical Press |
publishDate |
2014 |
url |
https://doaj.org/article/c4250663fcb24c749e9651c84f359e12 |
work_keys_str_mv |
AT kanayamai comparativestudyofbioactivityofcollagenscaffoldscoatedwithgrapheneoxideandreducedgrapheneoxide AT miyajih comparativestudyofbioactivityofcollagenscaffoldscoatedwithgrapheneoxideandreducedgrapheneoxide AT takitah comparativestudyofbioactivityofcollagenscaffoldscoatedwithgrapheneoxideandreducedgrapheneoxide AT nishidae comparativestudyofbioactivityofcollagenscaffoldscoatedwithgrapheneoxideandreducedgrapheneoxide AT tsujim comparativestudyofbioactivityofcollagenscaffoldscoatedwithgrapheneoxideandreducedgrapheneoxide AT fugetsub comparativestudyofbioactivityofcollagenscaffoldscoatedwithgrapheneoxideandreducedgrapheneoxide AT sunl comparativestudyofbioactivityofcollagenscaffoldscoatedwithgrapheneoxideandreducedgrapheneoxide AT inouek comparativestudyofbioactivityofcollagenscaffoldscoatedwithgrapheneoxideandreducedgrapheneoxide AT ibaraa comparativestudyofbioactivityofcollagenscaffoldscoatedwithgrapheneoxideandreducedgrapheneoxide AT akasakat comparativestudyofbioactivityofcollagenscaffoldscoatedwithgrapheneoxideandreducedgrapheneoxide AT sugayat comparativestudyofbioactivityofcollagenscaffoldscoatedwithgrapheneoxideandreducedgrapheneoxide AT kawanamim comparativestudyofbioactivityofcollagenscaffoldscoatedwithgrapheneoxideandreducedgrapheneoxide |
_version_ |
1718402676529561600 |