Thioesterase induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin results in a futile cycle that inhibits hepatic β-oxidation

Abstract 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant, induces steatosis by increasing hepatic uptake of dietary and mobilized peripheral fats, inhibiting lipoprotein export, and repressing β-oxidation. In this study, the mechanism of β-oxidation inhibition was...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Giovan N. Cholico, Russell R. Fling, Nicholas A. Zacharewski, Kelly A. Fader, Rance Nault, Timothy R. Zacharewski
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c45e1cdb4ce34f019fc7bb449eff6b5a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c45e1cdb4ce34f019fc7bb449eff6b5a
record_format dspace
spelling oai:doaj.org-article:c45e1cdb4ce34f019fc7bb449eff6b5a2021-12-02T18:49:27ZThioesterase induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin results in a futile cycle that inhibits hepatic β-oxidation10.1038/s41598-021-95214-02045-2322https://doaj.org/article/c45e1cdb4ce34f019fc7bb449eff6b5a2021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95214-0https://doaj.org/toc/2045-2322Abstract 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant, induces steatosis by increasing hepatic uptake of dietary and mobilized peripheral fats, inhibiting lipoprotein export, and repressing β-oxidation. In this study, the mechanism of β-oxidation inhibition was investigated by testing the hypothesis that TCDD dose-dependently repressed straight-chain fatty acid oxidation gene expression in mice following oral gavage every 4 days for 28 days. Untargeted metabolomic analysis revealed a dose-dependent decrease in hepatic acyl-CoA levels, while octenoyl-CoA and dicarboxylic acid levels increased. TCDD also dose-dependently repressed the hepatic gene expression associated with triacylglycerol and cholesterol ester hydrolysis, fatty acid binding proteins, fatty acid activation, and 3-ketoacyl-CoA thiolysis while inducing acyl-CoA hydrolysis. Moreover, octenoyl-CoA blocked the hydration of crotonyl-CoA suggesting short chain enoyl-CoA hydratase (ECHS1) activity was inhibited. Collectively, the integration of metabolomics and RNA-seq data suggested TCDD induced a futile cycle of fatty acid activation and acyl-CoA hydrolysis resulting in incomplete β-oxidation, and the accumulation octenoyl-CoA levels that inhibited the activity of short chain enoyl-CoA hydratase (ECHS1).Giovan N. CholicoRussell R. FlingNicholas A. ZacharewskiKelly A. FaderRance NaultTimothy R. ZacharewskiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-20 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Giovan N. Cholico
Russell R. Fling
Nicholas A. Zacharewski
Kelly A. Fader
Rance Nault
Timothy R. Zacharewski
Thioesterase induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin results in a futile cycle that inhibits hepatic β-oxidation
description Abstract 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant, induces steatosis by increasing hepatic uptake of dietary and mobilized peripheral fats, inhibiting lipoprotein export, and repressing β-oxidation. In this study, the mechanism of β-oxidation inhibition was investigated by testing the hypothesis that TCDD dose-dependently repressed straight-chain fatty acid oxidation gene expression in mice following oral gavage every 4 days for 28 days. Untargeted metabolomic analysis revealed a dose-dependent decrease in hepatic acyl-CoA levels, while octenoyl-CoA and dicarboxylic acid levels increased. TCDD also dose-dependently repressed the hepatic gene expression associated with triacylglycerol and cholesterol ester hydrolysis, fatty acid binding proteins, fatty acid activation, and 3-ketoacyl-CoA thiolysis while inducing acyl-CoA hydrolysis. Moreover, octenoyl-CoA blocked the hydration of crotonyl-CoA suggesting short chain enoyl-CoA hydratase (ECHS1) activity was inhibited. Collectively, the integration of metabolomics and RNA-seq data suggested TCDD induced a futile cycle of fatty acid activation and acyl-CoA hydrolysis resulting in incomplete β-oxidation, and the accumulation octenoyl-CoA levels that inhibited the activity of short chain enoyl-CoA hydratase (ECHS1).
format article
author Giovan N. Cholico
Russell R. Fling
Nicholas A. Zacharewski
Kelly A. Fader
Rance Nault
Timothy R. Zacharewski
author_facet Giovan N. Cholico
Russell R. Fling
Nicholas A. Zacharewski
Kelly A. Fader
Rance Nault
Timothy R. Zacharewski
author_sort Giovan N. Cholico
title Thioesterase induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin results in a futile cycle that inhibits hepatic β-oxidation
title_short Thioesterase induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin results in a futile cycle that inhibits hepatic β-oxidation
title_full Thioesterase induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin results in a futile cycle that inhibits hepatic β-oxidation
title_fullStr Thioesterase induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin results in a futile cycle that inhibits hepatic β-oxidation
title_full_unstemmed Thioesterase induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin results in a futile cycle that inhibits hepatic β-oxidation
title_sort thioesterase induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin results in a futile cycle that inhibits hepatic β-oxidation
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/c45e1cdb4ce34f019fc7bb449eff6b5a
work_keys_str_mv AT giovanncholico thioesteraseinductionby2378tetrachlorodibenzopdioxinresultsinafutilecyclethatinhibitshepaticboxidation
AT russellrfling thioesteraseinductionby2378tetrachlorodibenzopdioxinresultsinafutilecyclethatinhibitshepaticboxidation
AT nicholasazacharewski thioesteraseinductionby2378tetrachlorodibenzopdioxinresultsinafutilecyclethatinhibitshepaticboxidation
AT kellyafader thioesteraseinductionby2378tetrachlorodibenzopdioxinresultsinafutilecyclethatinhibitshepaticboxidation
AT rancenault thioesteraseinductionby2378tetrachlorodibenzopdioxinresultsinafutilecyclethatinhibitshepaticboxidation
AT timothyrzacharewski thioesteraseinductionby2378tetrachlorodibenzopdioxinresultsinafutilecyclethatinhibitshepaticboxidation
_version_ 1718377589246001152