LC–MS peak assignment based on unanimous selection by six machine learning algorithms
Abstract Recent mass spectrometry (MS)-based techniques enable deep proteome coverage with relative quantitative analysis, resulting in increased identification of very weak signals accompanied by increased data size of liquid chromatography (LC)–MS/MS spectra. However, the identification of weak si...
Guardado en:
Autores principales: | Hiroaki Ito, Takashi Matsui, Ryo Konno, Makoto Itakura, Yoshio Kodera |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c4b961b0216b4cf98d42bebbb6cc47ec |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Metabolite Profiling for Six 'B' Vitamins Using LC-MS in Tomato Genotypes at Different Stages of Fruit Maturity
por: P Kavitha, et al.
Publicado: (2015) -
Peptide Markers for Rapid Detection of KPC Carbapenemase by LC-MS/MS
por: Honghui Wang, et al.
Publicado: (2017) -
Peptidome analysis of cerebrospinal fluid by LC-MALDI MS.
por: Mikko Hölttä, et al.
Publicado: (2012) -
An LC-MS Approach to Quantitative Measurement of Ammonia Isotopologues
por: Jessica B. Spinelli, et al.
Publicado: (2017) -
LC-MS/MS METHOD FOR L-DOPA QUANTIFICATION IN DIFFERENT TISSUES OF VICIA FABA
por: Pavón-Pérez,Jessy, et al.
Publicado: (2019)