Semantic focusing allows fully automated single-layer slide scanning of cervical cytology slides.
Liquid-based cytology (LBC) in conjunction with Whole-Slide Imaging (WSI) enables the objective and sensitive and quantitative evaluation of biomarkers in cytology. However, the complex three-dimensional distribution of cells on LBC slides requires manual focusing, long scanning-times, and multi-lay...
Guardado en:
Autores principales: | Bernd Lahrmann, Nektarios A Valous, Urs Eisenmann, Nicolas Wentzensen, Niels Grabe |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c4cdf36abfa54b27a2f4d2c8dca2c87d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robust whole slide image analysis for cervical cancer screening using deep learning
por: Shenghua Cheng, et al.
Publicado: (2021) -
Sliding of coherent twin boundaries
por: Zhang-Jie Wang, et al.
Publicado: (2017) -
NECScanNet: Novel Method for Cervical Neuroendocrine Cancer Screening from Whole Slide Images
por: Xin Liao, et al.
Publicado: (2021) -
Fully automated preoperative segmentation of temporal bone structures from clinical CT scans
por: C. A. Neves, et al.
Publicado: (2021) -
Scaling theory of rubber sliding friction
por: Reinhard Hentschke, et al.
Publicado: (2021)