New statistical model for misreported data with application to current public health challenges
Abstract The main goal of this work is to present a new model able to deal with potentially misreported continuous time series. The proposed model is able to handle the autocorrelation structure in continuous time series data, which might be partially or totally underreported or overreported. Its pe...
Enregistré dans:
Auteurs principaux: | , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c4cf1cc2b6c6404d96e8b7425cc30bb9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | Abstract The main goal of this work is to present a new model able to deal with potentially misreported continuous time series. The proposed model is able to handle the autocorrelation structure in continuous time series data, which might be partially or totally underreported or overreported. Its performance is illustrated through a comprehensive simulation study considering several autocorrelation structures and three real data applications on human papillomavirus incidence in Girona (Catalonia, Spain) and Covid-19 incidence in two regions with very different circumstances: the early days of the epidemic in the Chinese region of Heilongjiang and the most current data from Catalonia. |
---|