Research on maintenance spare parts requirement prediction based on LSTM recurrent neural network
The aim of this study was to improve the low accuracy of equipment spare parts requirement predicting, which affects the quality and efficiency of maintenance support, based on the summary and analysis of the existing spare parts requirement predicting research. This article introduces the current l...
Guardado en:
Autores principales: | Song Weixing, Wu Jingjing, Kang Jianshe, Zhang Jun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c4d2582737d94ded8493dd190e838151 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Mission-Oriented Aircraft Spare Parts Carried Consumption Prediction Method Based on XGBoost-GRA-DEMATEL
por: Song Chuanzhou, Wang Ruiqi, Li Tianqing, Liu Ke, Yin Wenguang
Publicado: (2021) -
Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press
por: Balduíno César Mateus, et al.
Publicado: (2021) -
Outcomes of nephron sparing surgery and cortical sparing adrenalectomy in the management of Von Hippel–Lindau syndrome
por: Selvin Theodore Jayanth, et al.
Publicado: (2021) -
Load data recovery method based on SOM-LSTM neural network
por: Yiming Ma, et al.
Publicado: (2022) -
Construction of Prediction Model for Multi-Feature Fusion Time Sequence Data of Internet of Things Under VR and LSTM
por: Xinwen Liao, et al.
Publicado: (2021)