Bayesian genome scale modelling identifies thermal determinants of yeast metabolism
While temperature impacts the function of all cellular components, it’s hard to rule out how the temperature dependence of cell phenotypes emerged from the dependence of individual components. Here, the authors develop a Bayesian genome scale modelling approach to identify thermal determinants of ye...
Guardado en:
Autores principales: | Gang Li, Yating Hu, Jan Zrimec, Hao Luo, Hao Wang, Aleksej Zelezniak, Boyang Ji, Jens Nielsen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c4d8dc17c5b3409e95dfdd6fb1d4c551 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Yeast metabolic innovations emerged via expanded metabolic network and gene positive selection
por: Hongzhong Lu, et al.
Publicado: (2021) -
Plastic-Degrading Potential across the Global Microbiome Correlates with Recent Pollution Trends
por: Jan Zrimec, et al.
Publicado: (2021) -
FMN reduces Amyloid-β toxicity in yeast by regulating redox status and cellular metabolism
por: Xin Chen, et al.
Publicado: (2020) -
Synthetic Biology for Engineering Acetyl Coenzyme A Metabolism in Yeast
por: Jens Nielsen
Publicado: (2014) -
Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure
por: Jan Zrimec, et al.
Publicado: (2020)