DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires

The advent of high-throughput T-cell receptor sequencing has allowed for the rapid and thorough characterization of the adaptive immune response. Here the authors show how deep learning can reveal both descriptive and predictive sequence concepts within the immune repertoire.

Guardado en:
Detalles Bibliográficos
Autores principales: John-William Sidhom, H. Benjamin Larman, Drew M. Pardoll, Alexander S. Baras
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/c4e3c2b9c49b4aa788292791fd3cc408
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c4e3c2b9c49b4aa788292791fd3cc408
record_format dspace
spelling oai:doaj.org-article:c4e3c2b9c49b4aa788292791fd3cc4082021-12-02T15:52:37ZDeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires10.1038/s41467-021-21879-w2041-1723https://doaj.org/article/c4e3c2b9c49b4aa788292791fd3cc4082021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21879-whttps://doaj.org/toc/2041-1723The advent of high-throughput T-cell receptor sequencing has allowed for the rapid and thorough characterization of the adaptive immune response. Here the authors show how deep learning can reveal both descriptive and predictive sequence concepts within the immune repertoire.John-William SidhomH. Benjamin LarmanDrew M. PardollAlexander S. BarasNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
John-William Sidhom
H. Benjamin Larman
Drew M. Pardoll
Alexander S. Baras
DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
description The advent of high-throughput T-cell receptor sequencing has allowed for the rapid and thorough characterization of the adaptive immune response. Here the authors show how deep learning can reveal both descriptive and predictive sequence concepts within the immune repertoire.
format article
author John-William Sidhom
H. Benjamin Larman
Drew M. Pardoll
Alexander S. Baras
author_facet John-William Sidhom
H. Benjamin Larman
Drew M. Pardoll
Alexander S. Baras
author_sort John-William Sidhom
title DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
title_short DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
title_full DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
title_fullStr DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
title_full_unstemmed DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
title_sort deeptcr is a deep learning framework for revealing sequence concepts within t-cell repertoires
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/c4e3c2b9c49b4aa788292791fd3cc408
work_keys_str_mv AT johnwilliamsidhom deeptcrisadeeplearningframeworkforrevealingsequenceconceptswithintcellrepertoires
AT hbenjaminlarman deeptcrisadeeplearningframeworkforrevealingsequenceconceptswithintcellrepertoires
AT drewmpardoll deeptcrisadeeplearningframeworkforrevealingsequenceconceptswithintcellrepertoires
AT alexandersbaras deeptcrisadeeplearningframeworkforrevealingsequenceconceptswithintcellrepertoires
_version_ 1718385595935358976