DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
The advent of high-throughput T-cell receptor sequencing has allowed for the rapid and thorough characterization of the adaptive immune response. Here the authors show how deep learning can reveal both descriptive and predictive sequence concepts within the immune repertoire.
Guardado en:
Autores principales: | John-William Sidhom, H. Benjamin Larman, Drew M. Pardoll, Alexander S. Baras |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c4e3c2b9c49b4aa788292791fd3cc408 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
por: John-William Sidhom, et al.
Publicado: (2021) -
Deep learning identifies antigenic determinants of severe SARS-CoV-2 infection within T-cell repertoires
por: John-William Sidhom, et al.
Publicado: (2021) -
The TCR repertoire of α-synuclein-specific T cells in Parkinson’s disease is surprisingly diverse
por: Akul Singhania, et al.
Publicado: (2021) -
Sequence-to-function deep learning frameworks for engineered riboregulators
por: Jacqueline A. Valeri, et al.
Publicado: (2020) -
NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data
por: Alessandro Montemurro, et al.
Publicado: (2021)