DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
The advent of high-throughput T-cell receptor sequencing has allowed for the rapid and thorough characterization of the adaptive immune response. Here the authors show how deep learning can reveal both descriptive and predictive sequence concepts within the immune repertoire.
Enregistré dans:
Auteurs principaux: | John-William Sidhom, H. Benjamin Larman, Drew M. Pardoll, Alexander S. Baras |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c4e3c2b9c49b4aa788292791fd3cc408 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Author Correction: DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
par: John-William Sidhom, et autres
Publié: (2021) -
Deep learning identifies antigenic determinants of severe SARS-CoV-2 infection within T-cell repertoires
par: John-William Sidhom, et autres
Publié: (2021) -
The TCR repertoire of α-synuclein-specific T cells in Parkinson’s disease is surprisingly diverse
par: Akul Singhania, et autres
Publié: (2021) -
Sequence-to-function deep learning frameworks for engineered riboregulators
par: Jacqueline A. Valeri, et autres
Publié: (2020) -
NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data
par: Alessandro Montemurro, et autres
Publié: (2021)