Artificial Intelligence Algorithms in Visual Evoked Potential-Based Brain-Computer Interfaces for Motor Rehabilitation Applications: Systematic Review and Future Directions
Brain-Computer Interface (BCI) is a technology that uses electroencephalographic (EEG) signals to control external devices, such as Functional Electrical Stimulation (FES). Visual BCI paradigms based on P300 and Steady State Visually Evoked potentials (SSVEP) have shown high potential for clinical p...
Guardado en:
Autores principales: | Josefina Gutierrez-Martinez, Jorge A. Mercado-Gutierrez, Blanca E. Carvajal-Gámez, Jorge L. Rosas-Trigueros, Adrian E. Contreras-Martinez |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c4e84ed939e7445e8e5dc5eb9fab0497 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Use of Force Feedback Device in a Hybrid Brain-Computer Interface Based on SSVEP, EOG and Eye Tracking for Sorting Items
por: Arkadiusz Kubacki
Publicado: (2021) -
Visual evoked potential repeatability using the Diopsys NOVA LX fixed protocol in normal older adults
por: Trevino RC, et al.
Publicado: (2018) -
Visual evoked potentials after panretinal photocoagulation in patients with proliferative diabetic retinopathy
por: Amini Vishte R, et al.
Publicado: (2019) -
Filter Bank Convolutional Neural Network for SSVEP Classification
por: Dechun Zhao, et al.
Publicado: (2021) -
Neurophysiological Changes in Patients with Discirculatory Encephalopathy Associated with Ischemic Optic Neuropathy
por: T. N. Iureva, et al.
Publicado: (2020)