Artificial Intelligence Algorithms in Visual Evoked Potential-Based Brain-Computer Interfaces for Motor Rehabilitation Applications: Systematic Review and Future Directions
Brain-Computer Interface (BCI) is a technology that uses electroencephalographic (EEG) signals to control external devices, such as Functional Electrical Stimulation (FES). Visual BCI paradigms based on P300 and Steady State Visually Evoked potentials (SSVEP) have shown high potential for clinical p...
Enregistré dans:
Auteurs principaux: | Josefina Gutierrez-Martinez, Jorge A. Mercado-Gutierrez, Blanca E. Carvajal-Gámez, Jorge L. Rosas-Trigueros, Adrian E. Contreras-Martinez |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Frontiers Media S.A.
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c4e84ed939e7445e8e5dc5eb9fab0497 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Use of Force Feedback Device in a Hybrid Brain-Computer Interface Based on SSVEP, EOG and Eye Tracking for Sorting Items
par: Arkadiusz Kubacki
Publié: (2021) -
Visual evoked potential repeatability using the Diopsys NOVA LX fixed protocol in normal older adults
par: Trevino RC, et autres
Publié: (2018) -
Visual evoked potentials after panretinal photocoagulation in patients with proliferative diabetic retinopathy
par: Amini Vishte R, et autres
Publié: (2019) -
Filter Bank Convolutional Neural Network for SSVEP Classification
par: Dechun Zhao, et autres
Publié: (2021) -
Neurophysiological Changes in Patients with Discirculatory Encephalopathy Associated with Ischemic Optic Neuropathy
par: T. N. Iureva, et autres
Publié: (2020)