Dimensionality reduction reveals fine-scale structure in the Japanese population with consequences for polygenic risk prediction

Population structure, even subtle differences within seemingly homogenous populations, can have an impact on the accuracy of polygenic prediction. Here, Sakaue et al. use dimensionality reduction methods to reveal fine-scale structure in the Biobank Japan cohort and explore the performance of polyge...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Saori Sakaue, Jun Hirata, Masahiro Kanai, Ken Suzuki, Masato Akiyama, Chun Lai Too, Thurayya Arayssi, Mohammed Hammoudeh, Samar Al Emadi, Basel K. Masri, Hussein Halabi, Humeira Badsha, Imad W. Uthman, Richa Saxena, Leonid Padyukov, Makoto Hirata, Koichi Matsuda, Yoshinori Murakami, Yoichiro Kamatani, Yukinori Okada
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/c4f4b797ca974d86bfaca12d2007301f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Population structure, even subtle differences within seemingly homogenous populations, can have an impact on the accuracy of polygenic prediction. Here, Sakaue et al. use dimensionality reduction methods to reveal fine-scale structure in the Biobank Japan cohort and explore the performance of polygenic risk scores.