Dimensionality reduction reveals fine-scale structure in the Japanese population with consequences for polygenic risk prediction
Population structure, even subtle differences within seemingly homogenous populations, can have an impact on the accuracy of polygenic prediction. Here, Sakaue et al. use dimensionality reduction methods to reveal fine-scale structure in the Biobank Japan cohort and explore the performance of polyge...
Guardado en:
Autores principales: | Saori Sakaue, Jun Hirata, Masahiro Kanai, Ken Suzuki, Masato Akiyama, Chun Lai Too, Thurayya Arayssi, Mohammed Hammoudeh, Samar Al Emadi, Basel K. Masri, Hussein Halabi, Humeira Badsha, Imad W. Uthman, Richa Saxena, Leonid Padyukov, Makoto Hirata, Koichi Matsuda, Yoshinori Murakami, Yoichiro Kamatani, Yukinori Okada |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c4f4b797ca974d86bfaca12d2007301f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Large Scale Metabolic Profiling identifies Novel Steroids linked to Rheumatoid Arthritis
por: Noha A. Yousri, et al.
Publicado: (2017) -
A deep learning method for HLA imputation and trans-ethnic MHC fine-mapping of type 1 diabetes
por: Tatsuhiko Naito, et al.
Publicado: (2021) -
Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese
por: Yukinori Okada, et al.
Publicado: (2018) -
Characterizing rare and low-frequency height-associated variants in the Japanese population
por: Masato Akiyama, et al.
Publicado: (2019) -
Author Correction: Characterizing rare and low-frequency height-associated variants in the Japanese population
por: Masato Akiyama, et al.
Publicado: (2020)