Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient?
Abstract As machine learning/artificial intelligence algorithms are defeating chess masters and, most recently, GO champions, there is interest – and hope – that they will prove equally useful in assisting chemists in predicting outcomes of organic reactions. This paper demonstrates, however, that t...
Guardado en:
Autores principales: | G. Skoraczyński, P. Dittwald, B. Miasojedow, S. Szymkuć, E. P. Gajewska, B. A. Grzybowski, A. Gambin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c4f5d458d8274d07a332b52b041c113d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic mapping of atoms across both simple and complex chemical reactions
por: Wojciech Jaworski, et al.
Publicado: (2019) -
Screening highly active perovskites for hydrogen-evolving reaction via unifying ionic electronegativity descriptor
por: Daqin Guan, et al.
Publicado: (2019) -
Electronic parameters in cobalt-based perovskite-type oxides as descriptors for chemocatalytic reactions
por: Johannes Simböck, et al.
Publicado: (2020) -
Prediction of kinase inhibitors binding modes with machine learning and reduced descriptor sets
por: Ibrahim Abdelbaky, et al.
Publicado: (2021) -
IMPACT OF GLOBAL AND LOCAL REACTIVITY DESCRIPTORS ON THE HETERO-DIELS-ALDER REACTION OF ENAMINOTHIONE WITH VARIOUS ELECTROPHILES
por: SAHU,VINITA, et al.
Publicado: (2014)