The dynamics of explore–exploit decisions reveal a signal-to-noise mechanism for random exploration

Abstract Growing evidence suggests that behavioral variability plays a critical role in how humans manage the tradeoff between exploration and exploitation. In these decisions a little variability can help us to overcome the desire to exploit known rewards by encouraging us to randomly explore somet...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Samuel F. Feng, Siyu Wang, Sylvia Zarnescu, Robert C. Wilson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c513672a398d49c4a8ebeb79d57578bd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Growing evidence suggests that behavioral variability plays a critical role in how humans manage the tradeoff between exploration and exploitation. In these decisions a little variability can help us to overcome the desire to exploit known rewards by encouraging us to randomly explore something else. Here we investigate how such ‘random exploration’ could be controlled using a drift-diffusion model of the explore–exploit choice. In this model, variability is controlled by either the signal-to-noise ratio with which reward is encoded (the ‘drift rate’), or the amount of information required before a decision is made (the ‘threshold’). By fitting this model to behavior, we find that while, statistically, both drift and threshold change when people randomly explore, numerically, the change in drift rate has by far the largest effect. This suggests that random exploration is primarily driven by changes in the signal-to-noise ratio with which reward information is represented in the brain.