Evaluation and enhancement of standard equations for renal function estimation in individuals with components of metabolic disease

Abstract Background The primary objective of this study aims to test patient factors, with a focus on cardiometabolic disease, influencing the performance of the Cockcroft-Gault equation in estimating glomerular filtration rate. Methods A cohort study was performed using data from adult patients wit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Luigi Brunetti, Hyunmoon Back, Sijia Yu, Urma Jalil, Leonid Kagan
Formato: article
Lenguaje:EN
Publicado: BMC 2021
Materias:
Acceso en línea:https://doaj.org/article/c51389c8dfc64af3a7cdd82b6afc2847
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Background The primary objective of this study aims to test patient factors, with a focus on cardiometabolic disease, influencing the performance of the Cockcroft-Gault equation in estimating glomerular filtration rate. Methods A cohort study was performed using data from adult patients with both a 24-h urine creatinine collection and a serum creatinine available. Creatinine clearance was calculated for each patient using the Cockcroft-Gault, Modified Diet in Renal Disease, and Chronic Kidney Disease Epidemiology Collaboration equations and estimates were compared to the measured 24-h urine creatinine clearance. In addition, new prediction equations were developed. Results In the overall study population (n = 484), 44.2% of patients were obese, 44.0% had diabetes, and 30.8% had dyslipidemia. A multivariable model which incorporating patient characteristics performed the best in terms of correlation to measured 24-h urine creatinine clearance, accuracy, and error. The modified Cockcroft-Gault equation using lean body weight performed best in the overall population, the obese subgroup, and the dyslipidemia subgroup in terms of strength of correlation, mean bias, and accuracy. Conclusions Regardless of strategy used to calculate creatinine clearance, residual error was present suggesting novel methods for estimating glomerular filtration rate are urgently needed.