Assortative mixing in close-packed spatial networks.

<h4>Background</h4>In recent years, there is aroused interest in expressing complex systems as networks of interacting nodes. Using descriptors from graph theory, it has been possible to classify many diverse systems derived from social and physical sciences alike. In particular, folded...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Deniz Turgut, Ali Rana Atilgan, Canan Atilgan
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2010
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c52411f91b014eb7900e73c62359bbd8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<h4>Background</h4>In recent years, there is aroused interest in expressing complex systems as networks of interacting nodes. Using descriptors from graph theory, it has been possible to classify many diverse systems derived from social and physical sciences alike. In particular, folded proteins as examples of self-assembled complex molecules have also been investigated intensely using these tools. However, we need to develop additional measures to classify different systems, in order to dissect the underlying hierarchy.<h4>Methodology and principal findings</h4>In this study, a general analytical relation for the dependence of nearest neighbor degree correlations on degree is derived. Dependence of local clustering on degree is shown to be the sole determining factor of assortative versus disassortative mixing in networks. The characteristics of networks constructed from spatial atomic/molecular systems exemplified by self-organized residue networks built from folded protein structures and block copolymers, atomic clusters and well-compressed polymeric melts are studied. Distributions of statistical properties of the networks are presented. For these densely-packed systems, assortative mixing in the network construction is found to apply, and conditions are derived for a simple linear dependence.<h4>Conclusions</h4>Our analyses (i) reveal patterns that are common to close-packed clusters of atoms/molecules, (ii) identify the type of surface effects prominent in different close-packed systems, and (iii) associate fingerprints that may be used to classify networks with varying types of correlations.