Direct Imaging of Plant Metabolites in the Rhizosphere Using Laser Desorption Ionization Ultra-High Resolution Mass Spectrometry

The interplay of rhizosphere components such as root exudates, microbes, and minerals results in small-scale gradients of organic molecules in the soil around roots. The current methods for the direct chemical imaging of plant metabolites in the rhizosphere often lack molecular information or requir...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Martin Lohse, Rebecca Haag, Eva Lippold, Doris Vetterlein, Thorsten Reemtsma, Oliver J. Lechtenfeld
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/c52a280871d0491a9d154927d81c906c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c52a280871d0491a9d154927d81c906c
record_format dspace
spelling oai:doaj.org-article:c52a280871d0491a9d154927d81c906c2021-12-03T06:51:35ZDirect Imaging of Plant Metabolites in the Rhizosphere Using Laser Desorption Ionization Ultra-High Resolution Mass Spectrometry1664-462X10.3389/fpls.2021.753812https://doaj.org/article/c52a280871d0491a9d154927d81c906c2021-12-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fpls.2021.753812/fullhttps://doaj.org/toc/1664-462XThe interplay of rhizosphere components such as root exudates, microbes, and minerals results in small-scale gradients of organic molecules in the soil around roots. The current methods for the direct chemical imaging of plant metabolites in the rhizosphere often lack molecular information or require labeling with fluorescent tags or isotopes. Here, we present a novel workflow using laser desorption ionization (LDI) combined with mass spectrometric imaging (MSI) to directly analyze plant metabolites in a complex soil matrix. Undisturbed samples of the roots and the surrounding soil of Zea mays L. plants from either field- or laboratory-scale experiments were embedded and cryosectioned to 100 μm thin sections. The target metabolites were detected with a spatial resolution of 25 μm in the root and the surrounding soil based on accurate masses using ultra-high mass resolution laser desorption ionization Fourier-transform ion cyclotron resonance mass spectrometry (LDI-FT-ICR-MS). Using this workflow, we could determine the rhizosphere gradients of a dihexose (e.g., sucrose) and other plant metabolites (e.g., coumaric acid, vanillic acid). The molecular gradients for the dihexose showed a high abundance of this metabolite in the root and a strong depletion of the signal intensity within 150 μm from the root surface. Analyzing several sections from the same undisturbed soil sample allowed us to follow molecular gradients along the root axis. Benefiting from the ultra-high mass resolution, isotopologues of the dihexose could be readily resolved to enable the detection of stable isotope labels on the compound level. Overall, the direct molecular imaging via LDI-FT-ICR-MS allows for the first time a non-targeted or targeted analysis of plant metabolites in undisturbed soil samples, paving the way to study the turnover of root-derived organic carbon in the rhizosphere with high chemical and spatial resolution.Martin LohseRebecca HaagRebecca HaagEva LippoldDoris VetterleinDoris VetterleinThorsten ReemtsmaThorsten ReemtsmaOliver J. LechtenfeldOliver J. LechtenfeldFrontiers Media S.A.articlechemical imagingspatial metabolomicslow molecular weight organicsroot exudationbiogeochemical gradientsFT-ICR-MSPlant cultureSB1-1110ENFrontiers in Plant Science, Vol 12 (2021)
institution DOAJ
collection DOAJ
language EN
topic chemical imaging
spatial metabolomics
low molecular weight organics
root exudation
biogeochemical gradients
FT-ICR-MS
Plant culture
SB1-1110
spellingShingle chemical imaging
spatial metabolomics
low molecular weight organics
root exudation
biogeochemical gradients
FT-ICR-MS
Plant culture
SB1-1110
Martin Lohse
Rebecca Haag
Rebecca Haag
Eva Lippold
Doris Vetterlein
Doris Vetterlein
Thorsten Reemtsma
Thorsten Reemtsma
Oliver J. Lechtenfeld
Oliver J. Lechtenfeld
Direct Imaging of Plant Metabolites in the Rhizosphere Using Laser Desorption Ionization Ultra-High Resolution Mass Spectrometry
description The interplay of rhizosphere components such as root exudates, microbes, and minerals results in small-scale gradients of organic molecules in the soil around roots. The current methods for the direct chemical imaging of plant metabolites in the rhizosphere often lack molecular information or require labeling with fluorescent tags or isotopes. Here, we present a novel workflow using laser desorption ionization (LDI) combined with mass spectrometric imaging (MSI) to directly analyze plant metabolites in a complex soil matrix. Undisturbed samples of the roots and the surrounding soil of Zea mays L. plants from either field- or laboratory-scale experiments were embedded and cryosectioned to 100 μm thin sections. The target metabolites were detected with a spatial resolution of 25 μm in the root and the surrounding soil based on accurate masses using ultra-high mass resolution laser desorption ionization Fourier-transform ion cyclotron resonance mass spectrometry (LDI-FT-ICR-MS). Using this workflow, we could determine the rhizosphere gradients of a dihexose (e.g., sucrose) and other plant metabolites (e.g., coumaric acid, vanillic acid). The molecular gradients for the dihexose showed a high abundance of this metabolite in the root and a strong depletion of the signal intensity within 150 μm from the root surface. Analyzing several sections from the same undisturbed soil sample allowed us to follow molecular gradients along the root axis. Benefiting from the ultra-high mass resolution, isotopologues of the dihexose could be readily resolved to enable the detection of stable isotope labels on the compound level. Overall, the direct molecular imaging via LDI-FT-ICR-MS allows for the first time a non-targeted or targeted analysis of plant metabolites in undisturbed soil samples, paving the way to study the turnover of root-derived organic carbon in the rhizosphere with high chemical and spatial resolution.
format article
author Martin Lohse
Rebecca Haag
Rebecca Haag
Eva Lippold
Doris Vetterlein
Doris Vetterlein
Thorsten Reemtsma
Thorsten Reemtsma
Oliver J. Lechtenfeld
Oliver J. Lechtenfeld
author_facet Martin Lohse
Rebecca Haag
Rebecca Haag
Eva Lippold
Doris Vetterlein
Doris Vetterlein
Thorsten Reemtsma
Thorsten Reemtsma
Oliver J. Lechtenfeld
Oliver J. Lechtenfeld
author_sort Martin Lohse
title Direct Imaging of Plant Metabolites in the Rhizosphere Using Laser Desorption Ionization Ultra-High Resolution Mass Spectrometry
title_short Direct Imaging of Plant Metabolites in the Rhizosphere Using Laser Desorption Ionization Ultra-High Resolution Mass Spectrometry
title_full Direct Imaging of Plant Metabolites in the Rhizosphere Using Laser Desorption Ionization Ultra-High Resolution Mass Spectrometry
title_fullStr Direct Imaging of Plant Metabolites in the Rhizosphere Using Laser Desorption Ionization Ultra-High Resolution Mass Spectrometry
title_full_unstemmed Direct Imaging of Plant Metabolites in the Rhizosphere Using Laser Desorption Ionization Ultra-High Resolution Mass Spectrometry
title_sort direct imaging of plant metabolites in the rhizosphere using laser desorption ionization ultra-high resolution mass spectrometry
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/c52a280871d0491a9d154927d81c906c
work_keys_str_mv AT martinlohse directimagingofplantmetabolitesintherhizosphereusinglaserdesorptionionizationultrahighresolutionmassspectrometry
AT rebeccahaag directimagingofplantmetabolitesintherhizosphereusinglaserdesorptionionizationultrahighresolutionmassspectrometry
AT rebeccahaag directimagingofplantmetabolitesintherhizosphereusinglaserdesorptionionizationultrahighresolutionmassspectrometry
AT evalippold directimagingofplantmetabolitesintherhizosphereusinglaserdesorptionionizationultrahighresolutionmassspectrometry
AT dorisvetterlein directimagingofplantmetabolitesintherhizosphereusinglaserdesorptionionizationultrahighresolutionmassspectrometry
AT dorisvetterlein directimagingofplantmetabolitesintherhizosphereusinglaserdesorptionionizationultrahighresolutionmassspectrometry
AT thorstenreemtsma directimagingofplantmetabolitesintherhizosphereusinglaserdesorptionionizationultrahighresolutionmassspectrometry
AT thorstenreemtsma directimagingofplantmetabolitesintherhizosphereusinglaserdesorptionionizationultrahighresolutionmassspectrometry
AT oliverjlechtenfeld directimagingofplantmetabolitesintherhizosphereusinglaserdesorptionionizationultrahighresolutionmassspectrometry
AT oliverjlechtenfeld directimagingofplantmetabolitesintherhizosphereusinglaserdesorptionionizationultrahighresolutionmassspectrometry
_version_ 1718373896465416192