Dirac-Type Nodal Spin Liquid Revealed by Refined Quantum Many-Body Solver Using Neural-Network Wave Function, Correlation Ratio, and Level Spectroscopy
Pursuing fractionalized particles that do not bear properties of conventional measurable objects, exemplified by bare particles in the vacuum such as electrons and elementary excitations such as magnons, is a challenge in physics. Here we show that a machine-learning method for quantum many-body sys...
Guardado en:
Autores principales: | Yusuke Nomura, Masatoshi Imada |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c54acacfb4df456bb201a70f10e4b6e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Constructing exact representations of quantum many-body systems with deep neural networks
por: Giuseppe Carleo, et al.
Publicado: (2018) -
Dirac Magnon Nodal Loops in Quasi-2D Quantum Magnets
por: S. A. Owerre
Publicado: (2017) -
Quantum spin mixing in Dirac materials
por: Ying-Jiun Chen, et al.
Publicado: (2021) -
Prediction of crossing nodal-lines and large intrinsic spin Hall conductivity in topological Dirac semimetal Ta3As family
por: Wenjie Hou, et al.
Publicado: (2021) -
Topological Dirac nodal lines and surface charges in fcc alkaline earth metals
por: Motoaki Hirayama, et al.
Publicado: (2017)