Prediction of large vessel occlusion for ischaemic stroke by using the machine learning model random forests
Guardado en:
Autores principales: | Ying Zhou, Xiaoxian Gong, Min Lou, Jianan Wang, Wenhua Zhang, Jungen Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMJ Publishing Group
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c552f50d025a4d27955e48d4d3ae7814 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine Learning-Based Model for Predicting Incidence and Severity of Acute Ischemic Stroke in Anterior Circulation Large Vessel Occlusion
por: Junzhao Cui, et al.
Publicado: (2021) -
Predicting hemorrhagic transformation after large vessel occlusion stroke in the era of mechanical thrombectomy.
por: Takanori Iwamoto, et al.
Publicado: (2021) -
Predictive Factors for the Need of Tracheostomy in Patients With Large Vessel Occlusion Stroke Being Treated With Mechanical Thrombectomy
por: Ilko L. Maier, et al.
Publicado: (2021) -
Diagnostic Value of Artificial Intelligence—Based Software in Detection of Large Vessel Occlusion in Acute Ischemic Stroke
por: Marcin Sawicki, et al.
Publicado: (2021) -
Secondary prevention medication persistence and prognosis of acute ischaemic stroke or transient ischaemic attack
por: Lei Zhang, et al.
Publicado: (2021)