Development of an algorithm for assessing fall risk in a Japanese inpatient population
Abstract Falling is a representative incident in hospitalization and can cause serious complications. In this study, we constructed an algorithm that nurses can use to easily recognize essential fall risk factors and appropriately perform an assessment. A total of 56,911 inpatients (non-fall, 56,673...
Guardado en:
Autores principales: | Tomoko Nakanishi, Tokunori Ikeda, Taishi Nakamura, Yoshinori Yamanouchi, Akira Chikamoto, Koichiro Usuku |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c55aa20760a5450898fdf1a0ab7f884d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Development of an algorithm for assessing fall risk in a Japanese inpatient population
por: Tomoko Nakanishi, et al.
Publicado: (2021) -
Evaluation of Characteristics of Inpatient Falls in Rasoul Akram Hospital
por: Kamran Aghakhani, et al.
Publicado: (2021) -
Evaluation of accelerometer-based fall detection algorithms on real-world falls.
por: Fabio Bagalà, et al.
Publicado: (2012) -
Choking risk among psychiatric inpatients
por: Nagamine T
Publicado: (2011) -
Association of microsatellite polymorphisms of the GPDS1 locus with normal tension glaucoma in the Japanese population
por: Kayo Nakamura, et al.
Publicado: (2009)