Spectral signature generalization and expansion can improve the accuracy of satellite image classification.
Conventional supervised classification of satellite images uses a single multi-band image and coincident ground observations to construct spectral signatures of land cover classes. We compared this approach with three alternatives that derive signatures from multiple images and time periods: (1) sig...
Guardado en:
Autores principales: | Alice G Laborte, Aileen A Maunahan, Robert J Hijmans |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c55f3a2b13404b0589092ac38520f607 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Applying satellite images to spectral signature development of maize production (Zea mays L. under Colombia's middle tropics conditions
por: Edier Fernando Ávila Vélez, et al.
Publicado: (2019) -
Neural Network Model for Land Cover Classification from Satellite Images
por: Bocco,Mónica, et al.
Publicado: (2007) -
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021) -
Deep Spectral Spatial Inverted Residual Network for Hyperspectral Image Classification
por: Tianyu Zhang, et al.
Publicado: (2021) -
Species abundance information improves sequence taxonomy classification accuracy
por: Benjamin D. Kaehler, et al.
Publicado: (2019)