A data-driven framework for selecting and validating digital health metrics: use-case in neurological sensorimotor impairments
Abstract Digital health metrics promise to advance the understanding of impaired body functions, for example in neurological disorders. However, their clinical integration is challenged by an insufficient validation of the many existing and often abstract metrics. Here, we propose a data-driven fram...
Guardado en:
Autores principales: | Christoph M. Kanzler, Mike D. Rinderknecht, Anne Schwarz, Ilse Lamers, Cynthia Gagnon, Jeremia P. O. Held, Peter Feys, Andreas R. Luft, Roger Gassert, Olivier Lambercy |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c562b14eba664541a738917133b5cc12 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting critical state after COVID-19 diagnosis: model development using a large US electronic health record dataset
por: Mike D. Rinderknecht, et al.
Publicado: (2021) -
Beyond performance metrics: modeling outcomes and cost for clinical machine learning
por: James A. Diao, et al.
Publicado: (2021) -
Actionable health app evaluation: translating expert frameworks into objective metrics
por: Sarah Lagan, et al.
Publicado: (2020) -
Using a Blur Metric to Estimate Linear Motion Blur Parameters
por: Taiebeh Askari Javaran, et al.
Publicado: (2021) -
The digital scribe in clinical practice: a scoping review and research agenda
por: Marieke M. van Buchem, et al.
Publicado: (2021)