Analyzing short-term noise dependencies of spike-counts in macaque prefrontal cortex using copulas and the flashlight transformation.

Simultaneous spike-counts of neural populations are typically modeled by a Gaussian distribution. On short time scales, however, this distribution is too restrictive to describe and analyze multivariate distributions of discrete spike-counts. We present an alternative that is based on copulas and ca...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Arno Onken, Steffen Grünewälder, Matthias H J Munk, Klaus Obermayer
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2009
Materias:
Acceso en línea:https://doaj.org/article/c57af24c6cbe462988ead4a39387adb9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c57af24c6cbe462988ead4a39387adb9
record_format dspace
spelling oai:doaj.org-article:c57af24c6cbe462988ead4a39387adb92021-11-25T05:42:49ZAnalyzing short-term noise dependencies of spike-counts in macaque prefrontal cortex using copulas and the flashlight transformation.1553-734X1553-735810.1371/journal.pcbi.1000577https://doaj.org/article/c57af24c6cbe462988ead4a39387adb92009-11-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/19956759/pdf/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Simultaneous spike-counts of neural populations are typically modeled by a Gaussian distribution. On short time scales, however, this distribution is too restrictive to describe and analyze multivariate distributions of discrete spike-counts. We present an alternative that is based on copulas and can account for arbitrary marginal distributions, including Poisson and negative binomial distributions as well as second and higher-order interactions. We describe maximum likelihood-based procedures for fitting copula-based models to spike-count data, and we derive a so-called flashlight transformation which makes it possible to move the tail dependence of an arbitrary copula into an arbitrary orthant of the multivariate probability distribution. Mixtures of copulas that combine different dependence structures and thereby model different driving processes simultaneously are also introduced. First, we apply copula-based models to populations of integrate-and-fire neurons receiving partially correlated input and show that the best fitting copulas provide information about the functional connectivity of coupled neurons which can be extracted using the flashlight transformation. We then apply the new method to data which were recorded from macaque prefrontal cortex using a multi-tetrode array. We find that copula-based distributions with negative binomial marginals provide an appropriate stochastic model for the multivariate spike-count distributions rather than the multivariate Poisson latent variables distribution and the often used multivariate normal distribution. The dependence structure of these distributions provides evidence for common inhibitory input to all recorded stimulus encoding neurons. Finally, we show that copula-based models can be successfully used to evaluate neural codes, e.g., to characterize stimulus-dependent spike-count distributions with information measures. This demonstrates that copula-based models are not only a versatile class of models for multivariate distributions of spike-counts, but that those models can be exploited to understand functional dependencies.Arno OnkenSteffen GrünewälderMatthias H J MunkKlaus ObermayerPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 5, Iss 11, p e1000577 (2009)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Arno Onken
Steffen Grünewälder
Matthias H J Munk
Klaus Obermayer
Analyzing short-term noise dependencies of spike-counts in macaque prefrontal cortex using copulas and the flashlight transformation.
description Simultaneous spike-counts of neural populations are typically modeled by a Gaussian distribution. On short time scales, however, this distribution is too restrictive to describe and analyze multivariate distributions of discrete spike-counts. We present an alternative that is based on copulas and can account for arbitrary marginal distributions, including Poisson and negative binomial distributions as well as second and higher-order interactions. We describe maximum likelihood-based procedures for fitting copula-based models to spike-count data, and we derive a so-called flashlight transformation which makes it possible to move the tail dependence of an arbitrary copula into an arbitrary orthant of the multivariate probability distribution. Mixtures of copulas that combine different dependence structures and thereby model different driving processes simultaneously are also introduced. First, we apply copula-based models to populations of integrate-and-fire neurons receiving partially correlated input and show that the best fitting copulas provide information about the functional connectivity of coupled neurons which can be extracted using the flashlight transformation. We then apply the new method to data which were recorded from macaque prefrontal cortex using a multi-tetrode array. We find that copula-based distributions with negative binomial marginals provide an appropriate stochastic model for the multivariate spike-count distributions rather than the multivariate Poisson latent variables distribution and the often used multivariate normal distribution. The dependence structure of these distributions provides evidence for common inhibitory input to all recorded stimulus encoding neurons. Finally, we show that copula-based models can be successfully used to evaluate neural codes, e.g., to characterize stimulus-dependent spike-count distributions with information measures. This demonstrates that copula-based models are not only a versatile class of models for multivariate distributions of spike-counts, but that those models can be exploited to understand functional dependencies.
format article
author Arno Onken
Steffen Grünewälder
Matthias H J Munk
Klaus Obermayer
author_facet Arno Onken
Steffen Grünewälder
Matthias H J Munk
Klaus Obermayer
author_sort Arno Onken
title Analyzing short-term noise dependencies of spike-counts in macaque prefrontal cortex using copulas and the flashlight transformation.
title_short Analyzing short-term noise dependencies of spike-counts in macaque prefrontal cortex using copulas and the flashlight transformation.
title_full Analyzing short-term noise dependencies of spike-counts in macaque prefrontal cortex using copulas and the flashlight transformation.
title_fullStr Analyzing short-term noise dependencies of spike-counts in macaque prefrontal cortex using copulas and the flashlight transformation.
title_full_unstemmed Analyzing short-term noise dependencies of spike-counts in macaque prefrontal cortex using copulas and the flashlight transformation.
title_sort analyzing short-term noise dependencies of spike-counts in macaque prefrontal cortex using copulas and the flashlight transformation.
publisher Public Library of Science (PLoS)
publishDate 2009
url https://doaj.org/article/c57af24c6cbe462988ead4a39387adb9
work_keys_str_mv AT arnoonken analyzingshorttermnoisedependenciesofspikecountsinmacaqueprefrontalcortexusingcopulasandtheflashlighttransformation
AT steffengrunewalder analyzingshorttermnoisedependenciesofspikecountsinmacaqueprefrontalcortexusingcopulasandtheflashlighttransformation
AT matthiashjmunk analyzingshorttermnoisedependenciesofspikecountsinmacaqueprefrontalcortexusingcopulasandtheflashlighttransformation
AT klausobermayer analyzingshorttermnoisedependenciesofspikecountsinmacaqueprefrontalcortexusingcopulasandtheflashlighttransformation
_version_ 1718414482636537856