A convolutional neural-network framework for modelling auditory sensory cells and synapses
Drakopoulos et al developed a machine-learning and computational-neuroscience approach that transforms analytical models of sensory neurons and synapses into deep-neural-network (DNN) neuronal units with the same biophysical properties. Focusing on auditory neurons and synapses, they showed that the...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c5801428ff8749b5922186c0d9f89358 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Drakopoulos et al developed a machine-learning and computational-neuroscience approach that transforms analytical models of sensory neurons and synapses into deep-neural-network (DNN) neuronal units with the same biophysical properties. Focusing on auditory neurons and synapses, they showed that their DNN-model architecture could be extended to a variety of existing analytical models and to other neuron and synapse types, thus potentially assisting the development of large-scale brain networks and DNN-based treatments. |
---|